SpaceLogic KNX

SpaceLogic KNX Universal Dimming Master

Dimming Switch Blind 3300/1.0

Application description

This document describes the software application 3300/1.0. The software application is used to program the SpaceLogic KNX Universal Dimming Master:
MTN6710-0102 | MTN6810-0102 | MTN6805-0008

11/20-3300/1.0

Legal information

The Schneider Electric brand and all registered trademarks of Schneider Electric Industries SAS referred to in this manual are the sole property of Schneider Electric SA and its subsidiaries. They may not be used without the written approval of the owner. This manual and its contents are protected by copyright laws for texts, drawings and models and by the law on trademarks. You agree not to duplicate the manual, in whole or in part, on media of any kind, without the written approval of Schneider Electric, other than for personal, non-commercial use as defined by the code of law. Furthermore, you agree not to create any hyperlinks to this manual or its contents. Schneider Electric does not grant the right or permission to use the manual or its content for personal and non-commercial use, with the sole exception of the non-exclusive right to view the current version of the manual and its content, at the viewer's own risk. All other rights reserved. Electrical equipment must be installed, operated, maintained and repaired by qualified personnel only. Schneider Electric accepts no liability for the consequences of using this material.

Warnings

Read through the following instructions carefully and familiarize yourself with the device prior to installation, operation and maintenance. The warnings listed below can be found throughout the documentation and indicate potential risks and dangers, or specific information that clarifies or simplifies a procedure.

The addition of a symbol to "Danger" or "Warning" safety instructions indicates an electrical danger that could result in serious injuries if the instructions are not followed.

This symbol represents a safety warning. It indicates the potential risk of personal injury. Follow all safety instructions with this symbol to avoid serious injuries or death.

DANGER

DANGER indicates an imminently hazardous situation that will inevitably result in a serious or fatal accident if the instructions are not observed.

WARNING

WARNING indicates a possible danger that could result in death or serious injuries if it is not avoided.

CAUTION

CAUTION indicates a possible danger that could result in minor injuries if it is not avoided.

NOTE

NOTE provides information about procedures that do not represent the risk of any physical injury.

Further information

The specified information must be observed, otherwise a program or data error may occur.

You will find additional information here to make your work easier.

Depictions in this document

Style and text features used

Text features used	Text feature	Meaning
	Programming	Body text contains: service buttons, tab name,
	Select the Programming button	parameter name and values.
	Relay operation	
	- Normally opened	
	- Blinking	
	File/Save	Menu and menu sequences
	Save changes?	System messages
	Selection:	Preset values in the ETS are highlighted in
	10\%/90\%	bold in the tables.
	...	
	.. works on the Switch object.	Group objects
	Operation chapter	Cross-references

Setting tabs, parameters and values

Overview - setting functions
The following overview allows you to understand the steps needed to access the functions and settings. This overview also provides you with the correct sequence for accessing the functions.

General settings	Type of Extension 1	MTN6805-0008
	Type of Extension 2 Channel function for Extension 1	Disabled
Ext. 1 Output 1-8t	Output 1-8	Switching

Meaning: Only set the parameter Type of Extension 1 to the value MTN6805-0008 on the General settings tab. Further parameters will then appear on the tab. These can be used to change settings. New tabs will also be opened.

ETS operation

Requirements for safe operation

Knowledge of the basic rules for operating programs using Windows ${ }^{\circledR}$ is a prerequisite for operation.

The ETS is the software for the KNX system, and is not manufacturer-specific. Knowledge of ETS operation is required. This also includes selection of the correct sensor or actuator, transferring it to the line and commissioning it.

Special features of the ETS software

Restoring defaults

You can set the factory-specified defaults using the Default parameters service button in the ETS5.

You can use the Default and Default parameters service buttons to switch all parameters back to the settings on delivery (following consultation). The ETS will then permanently delete all manual settings.

Express settings

You can use the Express settings to call up preset functions. Later, you simply connect group addresses to the functions.
Express settings for dimming --> 36
Express settings for switching --> 77
Express settings for blind / roller shutter --> 112
Express settings for roller shutter --> 158

Extended settings

With the Extended settings, you can configure individual functions with extensive options if required

Extended settings for dimming --> 56
Extended settings for switching --> 88
Extended settings for blind / roller shutter --> 131
Extended settings for roller shutter --> 162

Dependent functions and parameters

Many functions are affected by how other functions are set. This means that dependent functions can only be seen and selected in the ETS when the upstream function is enabled.

- If you deselect functions or change parameters, previously connected group addresses may be removed in the process.
- The values of some parameters only become active once the functions influenced by these parameters are activated.

Appropriate ETS version

The application is suitable for the ETS5. You cannot use earlier versions, e.g. the ETS3, ETS4.

Application files (knxprod) are optimized for the relevant ETS version. If you load an ETS4 application to ETS5, time will be wasted on conversion.

User interface

In the ETS, the device parameters are opened using the Edit parameters service button. The user interface is divided into 2 sections: The tabs are on the left and the parameters on the right, together with their values.

(A) Name of device
(B) Tab
(C) Parameter
(D) Input fields for parameter values

Table of contents

1 For your safety 11
1.1 Qualified personnel 11
2 General information about the Dimming Switch Blind 3300/1.0 application 12
2.1 Components and programming environment 13
2.2 Overview of application functions 13
3 General settings 17
3.1 Device protection and Cyber Security. 17
3.2 Selection of the SpaceLogic KNX extensions 18
3.3 Defining channel functions 20
Dimming 22
Switching 22
Blind 22
Roller shutter 22
3.4 Enable central functions 23
4 Extended settings 25
4.1 Energy saving 25
4.2 Device safety. 25
4.3 Device health 26
Cyclic sending live signal 26
Failure indicator 26
4.4 Global settings for scenes 27
Scenes names 27
Enable learning of scenes? 27
Enable description text field for scenes 27
4.5 Global settings for feedback 27
4.6 Sending delay after bus voltage recovery 28
4.7 Manual operation settings 28
Activation of manual operation 28
Enable button for manual operation via object 29
Suspend manual operation automatically 29
Send status of manual operation via object. 30
4.8 Global settings for dimming 30
Same dimming time at central function and scenes. 30
Priority of functions for dimming 31
Connected nominal voltage 31
4.9 Global settings for switching 31
Activation of the collected status response 31
Priority of functions for switching 32
4.10 Global settings for roller shutter and blind 33
Weather alarm function 33
Priority of functions for roller shutter and blind 34
Calibration 34
4.11 PIN Code for Firmware Update 35
5 Express settings for dimming 36
5.1 Basic functions for dimming 36
Switching (1 bit) 37
Dimming (4 bits) 38
Value dimming (1 byte) 39
5.2 Name of the channel dimming 40
5.3 Switch object behavior 41
5.4 Dimming curve 41
LED lamps 42
Halogen lamps 42
Incandescent lamps 42
User-defined dimming curve 43
5.5 Dimming range 47
5.6 Minimum brightness 47
5.7 Maximum brightness 48
5.8 Always start at 50% brightness (ESL/CFL) 48
5.9 Dimming operation mode 48
Automatic load detection 49
Special dimming mode (RL-LED). 50
5.10 Scenes 51
Enabling scenes 52
Number of scenes 52
Time delay for scene processing 53
Calling and saving scene values 53
Overwrite scene values during download 54
5.11 Central function dimming 55
5.12 Activating extended settings for dimming 55
6 Extended settings for dimming 56
6.1 Dimming time 56
Dimming times 56
6.2 Time settings 58
Staircase lighting time function (staircase timer) 58
On-delay and off-delay 63
6.3 Locking \& Priority settings 66
Priority function (priority control) 66
Locking function 69
6.4 Safety and alarm settings 71
Safety function dimming 71
Alarm function 72
Failure and download behavior 74
7 Express settings for switching 77
7.1 Name of the channel for switching 77
7.2 Switching mode 77
Switching 77
Blinking. 79
7.3 Contact mode 82
Normally opened 82
Normally closed 83
7.4 Scenes 84
Enable scenes 84
Number of scenes 84
Time delay for scene processing 85
Calling and saving scene values 85
Overwrite scene values during download 86
7.5 Central function switching 86
7.6 Status response 87
7.7 Activating extended settings for switching 87
8 Extended settings for switching 88
8.1 Time settings 88
Staircase lighting time function (staircase timer) 88
On-delay and off delay 94
8.2 Logic, Locking \& Priority settings 98
Logic function. 98
Functions with higher priority 102
Priority function (priority control) 102
Locking function 104
8.3 Safety and alarm settings. 106
Safety function switching 106
Alarm function 107
Failure and download behavior 109
9 Express settings for blind / roller shutter 112
9.1 Blind / roller shutter control 113
9.2 Name of the channel 115
9.3 Drive running time 115
9.4 Slat control (for blind only) 117
Slat rotation time 117
Setting the blind type (for blind only) 119
Slat position after movement 123
9.5 Locking manual mode 124
9.6 Scenes 125
Enabling scenes 125
Number of scenes 125
Time delay for scene processing 126
Calling and saving scene values 127
Overwrite scene values during download 128
9.7 Central function for blind 128
9.8 Status response 129
9.9 Activating extended settings for blind 130
9.10 Activating extended settings for roller shutter 130
10 Extended settings for blind / roller shutter 131
10.1 Extended drive timing 131
Idle time until upward movement 132
Startup delay 132
Deceleration delay 132
Additional start-up time on opening the slat (for blind only) 133
10.2 Automatic, Locking \& Calibration settings 133
Automatic mode 133
Locking function 136
Movement range limits 139
Calibration 143
10.3 Safety and alarm settings 147
Safety function for blind 147
Alarm function 149
Weather alarm function 151
Failure and download behavior 155
11 Express settings for roller shutter 158
11.1 Name of the channel 158
11.2 Roller shutter control drive time 159
11.3 Locking manual mode 159
11.4 Scenes 160
11.5 Central function for roller shutter 161
11.6 Status response 161
11.7 Activating extended settings for roller shutter 161
12 Extended settings for roller shutter 162
12.1 Extended drive timing 162
12.2 Automatic, Locking \& Calibration settings 163
Automatic mode 163
Locking function 165
Movement range limits 166
Calibration 167
12.3 Safety and alarm settings 168
Safety function for roller shutter 168
Alarm function 169
Weather alarm function 170
Failure and download behavior 172
13 Overview of group objects 174
14 Index. 176

1 For your safety

DANGER

Risk of fatal injury from electric shock, explosion or arc.
Safe electrical installation must be carried out by qualified professionals. Qualified professionals must demonstrate an in-depth knowledge of:

- Connecting to installation networks
- Connecting multiple electrical appliances
- Installation of electric cables
- Connection and setup of KNX networks
- Commissioning KNX installations
- Safety standards, local connection rules and regulations

Failure to observe these instructions will lead to death or serious injuries.

The devices and the associated ETS application must not be used to control safe-ty-related applications.

1.1 Qualified personnel

This document is aimed at personnel who are responsible for setting up, installing, commissioning and operating the device and the system in which it is installed.

Detailed expertise gained by means of training in the KNX system is a prerequisite.

2 General information about the Dimming Switch Blind 3300/1.0 application

With this software application, you can program the SpaceLogic KNX Universal Dimming Master. The device can switch and dim ohmic, inductive or capacitive loads. The dimmer is also designed for dimmable LED and energy-saving lamps. You can find information on the connectable loads under (Express settings for dimming --> 36) and in the user manual.

The dimmer controls the brightness of the connected lamps. You can set the control functions individually for each output channel of the dimmer.

You can add up to two KNX Universal Dimming Extension or Switch/Blind Extensions to the device. This results in the following combinations:

Master	Extension 1	Extension 2	Outputs
MTN6710-0102	-	-	$2 \times$ dimming
MTN6710-0102	MTN6810-0102	-	$4 \times$ dimming
MTN6710-0102	MTN6810-0102	MTN6810-0102	$6 \times$ dimming
MTN6710-0102	MTN6810-0102	MTN6805-0008	$4 \times$ dimming and $8 \times$ switching or 4 x blind
MTN6710-0102	MTN6805-0008	MTN6810-0102	$4 \times$ dimming and $8 \times$ switching or 4 x blind
MTN6710-0102	MTN6805-0008	MTN6805-0008	$2 x$ dimming and $16 \times$ switching or 8 x blind

The basic settings of the device are set on the General settings tab. Here you define the device configuration from master and extensions. You can then also specify the functions of the outputs here. (General settings --> 17).

The functions of the outputs are parameterized on the Express settings and Extended settings tabs of the outputs for dimming, switching, roller shutter and blind. Express settings for dimming --> 36, Express settings for switching --> 77, Express settings for blind / roller shutter --> 112, Express settings for roller shutter --> 158, Extended settings for dimming --> 56, Extended settings for switching --> 88, Extended settings for blind / roller shutter --> 131, Extended settings for roller shutter --> 162

You can use the Extended settings of the device to configure the global settings of the devices as needed. (Extended settings --> 25).

An overview of all group objects in this ETS application can be found at the end of this document:
Overview of group objects --> 174.

2.1 Components and programming environment

The device is commissioned using KNX-certified software. The application and the technical descriptions are updated regularly and can be found on the Internet.

This application runs in conjunction with ETS software version 5 or higher.

NOTE

ETS5 function "Partial download" shall not be used.
To program the application safely after changes of parameters and group addresses, please use the functions only:

- Full download [Ctrl + Shift + L]
- Download Application [Ctrl + Shift + Alt + D]

2.2 Overview of application functions

You can set the following functions for the actuator.
General settings --> 17

- Select SpaceLogic KNX Extensions 1 and 2
- MTN6810-0102 Universal Dimming
- MTN6805-0008 Switch/Blind
- Select channel functions of the master for each output (Dimming)
- Enabled
- Disabled
- Select channel functions of the extensions for each output (MTN6810-0102 Universal Dimming)
- Enabled
- Disabled
- Select channel functions of the extensions for each output (MTN6805-0008 Switch/Blind)
- Disabled
- Switch
- Roller shutter
- Blind
- Enable central functions

Extended settings --> 25

- Energy saving
- Device safety
- Device health
- Global settings for scene
- Delay for central functions (only if central function is activated with delay)
- Global settings for feedback
- Sending delay
- Manual operation settings
- Global settings for dimming
- Global settings for switching
- Global settings for roller shutter and blind
- PIN Code for Firmware Update

Express settings for dimming --> 36

- Basic functions
- Switching (1 bit), relative dimming (4 bit), absolute dimming/value dimming (1 byte)
- Name of the channel
- Switch-ON behavior (via switch object)
- Execute the selected switch-ON behavior
- Switch object behavior
- Dimming curve
- Minimum brightness in \%
- Maximum brightness in \%
- Always start at 50 \% brightness (ESL/CFL)
- Dimming operation mode
- Dimming object switches channel
- Value object switches channel
- Scenes
- Central function
- Status response for switching
- Status response for value
- Extended settings for dimming

Extended settings for dimming --> 56

- Dimming times
- Enable objects for dimming time
- Time for switching
- Time for dimming
- Time for value
- Time for priority
- Time for scenes
- Time settings
- Staircase lighting time
- On-delay time
- Off-delay time
- Locking \& Priority settings
- Priority function
- Safety and alarm settings
- Safety function (only if Device safety function is Enabled in Extended settings)
- Alarm function
- Failure and download behavior

Express settings for switching --> 77

- Name of the channel
- Switching mode
- Contact mode
- Scenes
- Central function
- Status response
- Extended settings for switching

Extended settings for switching --> 88

- Time settings
- Staircase lighting time
- On-delay time
- Off-delay time
- Logic, Locking \& Priority settings
- Priority function
- Logic function
- Safety and alarm settings
- Safety function
- Alarm function
- Failure and download behavior

Express settings for blind / roller shutter --> 112

- Name of the channel
- Blind control
- Up/Down running time (same or different)
- Idle time before change of direction
- Slat control
- Slat turning time (Open/Closed)
- Number of steps
- Type/movement of the existing blind
- Slat position
- Locking manual operation
- Scenes
- Central function
- Status response
- Status of height
- Status of moving
- Extended settings for blind

Extended settings for blind / roller shutter --> 131

- Extended drive timing
- Idle time until upward movement
- Startup delay
- Deceleration delay
- Additional start-up time on opening the slat
- Automatic, Locking \& Calibration settings
- Automatic mode
- Locking function
- Movement range limits
- Calibration
- Safety and alarm settings
- Safety function
- Alarm function
- Weather alarm function
- Failure and download behavior

Express settings for roller shutter --> 158

- Name of the channel
- Roller shutter control
- Running time
- Idle time before change of direction
- Locking manual operation
- Scenes
- Central function
- Status response
- Status of height
- Status of moving
- Extended settings for roller shutter

Extended settings for roller shutter --> 162

- Extended drive timing
- Idle time until upward movement
- Startup delay
- Deceleration delay
- Automatic, Locking \& Calibration settings
- Automatic mode
- Locking function
- Movement range limits
- Calibration
- Safety and alarm settings
- Safety function
- Alarm function
- Weather alarm function
- Failure and download behavior

Group addresses

- Maximum number of different group addresses: 1000
- Maximum assignments: 1000

3 General settings

You can define the basic configuration of the device on the General settings tab.

3.1 Device protection and Cyber Security

The SpaceLogic KNX Universal Dimming Master has a micro USB type B interface. This is intended for diagnosis and for updating the firmware of the device. A 4-digit PIN code should be set in the ETS application to prevent unauthorized persons from manipulating the firmware (Cyber Security).

This is requested before a firmware update with the Schneider Electric "Device Firmware Update Tool". Without this PIN, an update is not possible. You have 3 attempts to enter a valid access code. If the code is not entered correctly, the service port is disabled for 1 hour or the device must be restarted (power reset or device reset).

General	Device protection information:
settings	No valid PIN Code for Firmware Update! Please enter a valid PIN code in
the extended settings before downloading your configuration!	

The PIN code is entered on the Extended settings tab (PIN Code for Firmware Update --> 35). Weak PINs are prohibited (e.g. 0000, 1111, 2222, ...)

3.2 Selection of the SpaceLogic KNX extensions

The SpaceLogic KNX Universal Dimming Master is a KNX device to which two SpaceLogic KNX extensions can be connected.

The following extensions can be selected:

- MTN6810-0102, SpaceLogic KNX Universal Dimming Extension
- MTN6805-0008, SpaceLogic KNX Switch/Blind Extension

Master	Extension 1	Extension 2	Outputs
MTN6710-0102	-	-	$2 \times$ dimming
MTN6710-0102	MTN6810-0102	-	$4 \times$ dimming
MTN6710-0102	MTN6810-0102	MTN6810-0102	$6 \times$ dimming
MTN6710-0102	MTN6810-0102	MTN6805-0008	$4 \times$ dimming and $8 \times$ switching or $4 x$ blind
MTN6710-0102	MTN6805-0008	MTN6810-0102	$4 \times$ dimming and $8 \times$ switching or $4 x$ blind
MTN6710-0102	MTN6805-0008	 MTN6805-0008	$2 \times$ dimming and $16 \times$ switching or $8 \times$ blind

The distribution of functions between channels is freely selectable and depends on your requirements.

General settings	SpaceLogic KNX Extension selection Type of Extension 1
	Disabled
Type of Extension 2	MTN6810-0102 Universal Dimming
MTN6805-0008 Switch/Blind	
Sisabled	
MTN6810-0102 Universal Dimming	

Selecting MTN6810-0102 Universal Dimming adds Extension 1. The 2 new dimming outputs with tabs, parameters, channels and channel functions are now available in the application.

Extension 1 is displayed as an image to the right of the master.

Selecting MTN6805-0008 Switch/Blind adds Extension 1. The 8 new outputs with tabs, parameters, channels and channel functions are now available in the application.

Extension 1 is displayed as an image to the right of the master.

Selecting MTN6810-0102 Universal Dimming as Extension 2 adds the second Dimming extension.

Extension 2 is displayed as an image to the right of Extension 1.

For Extension 2, the new outputs are now displayed with tabs, parameters, channels and channel functions.

Selecting MTN6805-0008 Switch/Blind as Extension 2 adds the second Switch/ Blind extension.

Extension 2 is displayed as an image to the right of Extension 1.

For Extension 2, the new outputs are now displayed with tabs, parameters, channels and channel functions.

3.3 Defining channel functions

Each dimming output can be defined as the channel function Enabled or Disabled.
With an MTN6805-0008, SpaceLogic KNX Switch/Blind Extension, each output can be operated in the function Disabled or Switch or Blind or Roller shutter. In blind and roller shutter operation, two outputs are grouped together to form a single channel. The output contacts of the relays are then electronically interlocked. This means that you cannot switch on both contacts of a motor channel simultaneously. This applies to control via bus telegrams and to manual operation on the device.

NOTE

Check before putting into service: The load connections and the order of the devices (Master -> Extension 1 -> Extension 2) must be the same as your ETS programming.

- Connect the consumer to the dimming channels specified in the ETS.
- Connect blind motors to the blind channels defined in the ETS.
- Connect consumers to the switching channels specified in the ETS.
- If the extension is planned as Extension 1 (E1), then connect it directly to the master.
- If the extension is planned as Extension 2 (E2), then connect it to Extension 1.

An extension cannot be started if the order of the devices does not match your programming in the ETS.

General settings	Channel function for master
	Dimming Output 1
Dimming Output 2	Enabled
	Disabled

After activation of Extension 1:

MTN6810-0102 Universal Dimming

| General
 settings | Channel function for Extension 1 |
| :--- | :--- | :--- |
| Dimming Output 1 | Disabled |
| | Enabled |
| | Disabled |

MTN6805-0008 Switch/Blind

General settings	Channel function for Extension 1	
	Output 1-8	Disabled
		Switch
	Roller shutter	
Blind		

After activation of Extension 2:

MTN6810-0102 Universal Dimming

General settings	Channel function for Extension 1
	Dimming Output 1
Enabled	
	Dimming Output 2

MTN6805-0008 Switch/Blind

General settings	Channel function for Extension 2	
	Output 1-8	Disabled
	Switch	
Roller shutter		
Blind		

Dimming

To dim electrical consumers, you can switch the channel function of the device to Dimming mode.

General	Channel function Master / Exttings Oxtension 1 / Extension 2 1-2	
Output	Enabled	
Master/Ext. 1/2 1-2: -Dimminging Output 1-2	Express settings for dimming	\ldots

Express settings for dimming --> 36

Switching

To switch electrical consumers, you can switch the channel function of the device to Switching mode.

| General | Channel function for
 Extension 1/Extension 2
 settings | Sutput 1-8 |
| :--- | :--- | :--- |\quad Switch | Express settings for switching |
| :--- |$\quad \ldots$| Ext. $1 / 2$ |
| :--- |

Express settings for switching --> 77.,

Blind

To control electrical blinds, you can switch the channel function of the device to Blind mode.

General settings	Channel function for Extension 1 / Extension 2 Output 1-8	Blind
5		
Ext. 1/2 Output 1+2; 3+4; 5+6; 7+8: -Blind	Express settings for blind	...

Express settings for blind / roller shutter --> 112

Roller shutter

To control electric shutters, you can switch the channel function of the device to Roller shutter mode.

General settings	Channel function for Extension 1 / Extension 2 Output 1-8	Roller shutter

Express settings for roller shutter --> 158,

3.4 Enable central functions

Using the central function, you can switch several outputs simultaneously with a telegram via the central switching object. This functionality is available, for example, if you want to switch off all lamps at the press of a button when leaving the house and switch on all lamps at the press of a button when cleaning the house or in the event of an alarm.

Decentralized control without central function

Centralized control with central function

Dimming, switching, blind and roller shutter each have a separate central object with a corresponding central object.

In order to use the central function for the individual dimming, switch/blind/roller shutter channels, you must first enable the global function on the General settings tab.

General settings	Central functions	Disabled
	Enabled	
		Enabled / delayed

Following enabling, the group objects appear and all outputs are enabled for the central function.

Group objects

Group objects of the central function

No.	Name	Object function	Length	Behavior	Data type
1	Central	Switch	1 bit	Received	1.001 switch
2	Central	Move up/down roller shutter	1 bit	Received	1.008 up/down
3	Central	Move up/down blind	1 bit	Received	1.008 up/down
6	Central	Switch for dimmer	1 bit	Received	1.001 switch

Enabling a central function for each output

The central function for each output/drive is enabled or disabled on the Express settings for Dimming/Switching/Roller shutter/Blind tabs.
Central function dimming --> 55; Central function switching --> 86; Central function for blind --> 128; Central function for roller shutter --> 161

Central function delay times

The delay times for all channels together are parameterized on the Extended settings tab.

Extended settings	Delay of central functions all channels $(0 \ldots 255$, unit $=$ $100 \mathrm{~ms})$	$\mathbf{0}$
	Time between central functions for each channel.	$\mathbf{5}$
$(2 \ldots 255$, unit $=100 \mathrm{~ms})$		

The central function has the same priority as the normal switching function. Receiving a new object value via the central object has the same effect as receiving a new object value for the switch object of the output.

4 Extended settings

In the Extended settings, you can configure global device functions for the master and the extensions.

4.1 Energy saving

The status LEDs of the channels on the master can be switched off automatically after a period of between 1 minute and 255 minutes. In this way, you do not illuminate the switch cabinet unnecessarily. Pressing a button reactivates the LEDs for the preset time.

Extended settings	Energy saving
	Devices LEDs can be set to standby after (0...255, unit $=1$ min, $0=$ always on $)$

4.2 Device safety

This parameter activates the central safety object.
For each channel, a channel parameter can be used to determine whether and how this channel should respond to the safety object. The object value for the device safety function can also be set.

The device then waits for a telegram from an external sender within the set cycle time. If such a telegram is not received within the monitoring time, it is then possible to decide for each channel what should happen.
Dimming: Safety function dimming --> 71
Switch: Safety function switching --> 106
Blind: Safety function for blind --> 147
Roller shutter: Safety function for roller shutter --> 168

Extended settings	Device safety
Device safety	At object value "1"
	At object value "0"
	Disabled
Cycle time surveillance for Safety object $(0 \ldots 255$, unit $=1 \mathrm{~s}$, $0=$ inactive $)$	0

Following enabling, the group object appears.

Group objects

No.	Name	Object function	Length	Behavior	Data type
23	Central	Safety	1 bit	Received	1.005 alarm

Safety function priority
The safety function has the highest priority.

4.3 Device health

Cyclic sending live signal

With the setting Cyclic sending live signal >0, the central sign of life object is activated (live signal).

If activated, the device cyclically sends the value "1" with the cycle time set. This information is only a sign of life from the KNX master. Here, for example, the device can be monitored in a visualization.

Extended settings	Device health
	Cyclic sending live signal
$(0 \ldots 255$, unit $=1 \mathrm{~s}$,	0
$0=$ inactive $)$	

Following enabling, the group object appears.

Group objects

No.	Name	Object function	Length	Behavior	Data type
26	Central	Life signal	1 bit	Sending	1.017 trigger

Failure indicator

The failure indicator of the device can be activated in the ETS. Failure indication is carried out using two group objects.

Extended settings	Device health	
Enable outputs for failure indication	Disabled	
		Enabled

Following enabling, these group objects appear.

Group objects

Group object for failure indicator

No.	Name	Object function	Length	Behavior	Data type
27	Master	Fault - Internal	1 bit	Sending	1.001 switch
28	Master	Fault - External	1 bit	Sending	1.001 switch

The Fault - Internal object signals internal device faults detected during the selftest. The Schneider-Electric Device Firmware Update Tool can be used to diagnose the fault with the integrated diagnostics function.

The Fault - External object signals external installation faults. The Schneider-Electric Device Firmware Update Tool can be used to diagnose the fault with the integrated diagnostics function.

4.4 Global settings for scenes

Scenes names

This parameter is used to define the scene numbering view for the user in the ETS. Either Scene address 1-64 or Scene address 0-63. The values on the bus are always 0-63

```
Extended Global settings for scene
    Naming of the scenes
    (The values on the bus are always 0-63) Scene address 0-63
    Scene address 1-64
```


Enable learning of scenes?

The parameter Enable learning of scenes? is activated as standard and the learning of scenes is thus allowed. This can be disabled globally.

Extended settings	Global settings for scene	
	Enable learning of scenes?	Yes
		No

Enable description text field for scenes

A description text can be stored for each scene. This provides clarity for the different scenes. This function can be switched off globally here.

Extended settings	Global settings for scene	
	Enable description text field for scenes	Yes
		No

Dimming: Scenes --> 51
Switching: Scenes --> 84
Roller shutter: Scenes --> 125
Blind: Scenes --> 160

4.5 Global settings for feedback

Here you can set the delay of the feedback of this device and the time interval between multiple feedback telegrams.

If there is only one telegram to be sent, it is sent as set in the parameter Delay of status response for all channels. If more than one response is active, the other responses will be sent at the delay time intervals set by the parameter Time between responses for each channel.

Extended
 settings

Global settings for feedback
Delay of status response for all channels 0
(0...255, unit $=100 \mathrm{~ms}$)

Time between status respons-
es for each channel. 0
(0...50, unit $=100 \mathrm{~ms}$)

4.6 Sending delay after bus voltage recovery

It is possible to set a global sending delay for all telegrams after bus voltage recovery.

Once the bus voltage has been recovered, all send activities of the device are delayed.

| Extended
 settings | Sending delay |
| :--- | :--- | :--- |
| | Sending delay after bus volt-
 age recovery |
| $(0 \ldots 255$, unit $=1 \mathrm{~s})$ | |

4.7 Manual operation settings

On the front side of the master, there is a channel button for each channel and a corresponding yellow LED for indicating the channel status (channel status LED).

In addition to the channel buttons, the device also has device selection buttons (M for the master; E1 for Extension 1; E2 for Extension 2). With these buttons, you first select the device (Master/Extension 1/Extension 2) whose status you want to display or which you want to operate. Manual operation is performed after pressing the Manual pushbutton and then a channel button.

Activation of manual operation

Manual operation can be disabled on the device in the ETS. This means that operation on the device is no longer possible.

Extended settings	Manual operation settings Activation of manual operation on the device is	Not allowed
	Allowed	

Manual operation is enabled as standard.

Enable button for manual operation via object

Switching to manual operation control via the Manual pushbutton is only possible if the object Enable button for manual operation via object has the value "1". If the object has the value " 0 ", toggling to manual operation is disabled. If toggling is disabled by a telegram, the device also automatically deactivates manual operation.

The value of the object Enable button for manual operation via object can be parameterized after bus voltage recovery. The value "1" enables theManual pushbutton and the outputs can be operated on the device. The value " 0 " disables the Manual pushbutton after bus voltage recovery.

Extended settings	Manual operation settings	
	Enable button for manual operation via object	No
Object value after bus voltage	Yes (Manual pushbutton disabled)	
recovery	1 (Manual pushbutton enabled)	
		As before bus voltage failure

Following "Enable button for manual operation via object", the group object appears.

Group objects

Group object for
enable button for manual operation

No.	Name	Object function	Length	Behavior	Data type
15	Master keypad	Enable button for manual operation	1 bit	Received	1.003 enable

Suspend manual operation automatically

You can set a time limit for manual operation when toggling to it. To do so, set the parameter Suspend manual operation automatically to Yes

Then set the parameter Suspend manual operation after 1... 48 in hours to the desired time after which the device automatically resets manual operation. You can read the current operating status from the manual operation LED and you will receive feedback via the "Status of manual operation" object if you have enabled this function.

Extended settings	Manual operation settings	
	Suspend manual operation automatically	No
S Suspend manual operation	Yes	
after		
(1...48, unit = 1 hour)	$\mathbf{2}$	

Send status of manual operation via object

In addition to the possibility of enabling manual operation via the "Enable manual operation" object, it is also possible to send the status of the manual operation via the "Status of manual operation" object. You can read the current operating status from the manual operation LED and you will receive feedback via the "Status of manual operation" object if you have enabled this function.

Extended settings	Manual operation settings	
	Send status of manual opera- tion via object	No
		Yes

Once Send status of manual operation via object has been enabled, the group object appears.

Group objects

Group object for
status of manual operation

No.	Name	Object function	Length	Behavior	Data type
16	Master keypad	Status of manual operation	1 bit	Send/Read	1.001 switch

4.8 Global settings for dimming

The global settings for the dimming functions are defined here.

Same dimming time at central function and scenes

The function "Same dimming time" causes a dimming process with several dimming channels to start simultaneously and to end at the same time. You can use this function for scenes and central functions.

Extended settings	Global settings for dimming	
	Same dimming time for cen- tral function and scenes	No
Same dimming time for cen- tral function and scenes $(6 s-59.999$ min)	Yes	
Control same dimming time via bus	No	

The group object appears after the enabling Control same dimming time via bus.

Group objects

Group object for dimming time for scenes and central function

No.	Name	Object function	Length	Behavior	Data type
8	Central	Dimming time for scenes and central function	2 bytes	Received	7.004 time (100

With a telegram, the same dimming time for scenes and central function can be set or modified via the object (2 byte DPT 7.004 time (100 ms)) between 0 ms and 99:59:9 ms, e.g. using a button. This allows you to specify the length of the dimming time from different places according to the desired situation.

Priority of functions for dimming

The global priorities for dimming are defined here. The safety function has the highest priority. The other priorities can be selected here.

Extended settings	Global settings for switching	
	Priority of functions	Safety->Alarm->Lock/Prio->all other
		Safety->Lock/Prio->Alarm->all other

Connected nominal voltage

Extended settings	Global settings for switching	
	Connected nominal voltage	$220-240 \mathrm{~V} \sim$
		$110-127 \mathrm{~V} \sim$

This voltage information is required to ensure optimum zero crossing detection (synchronization with higher / lower voltage level) of the mains voltage.

4.9 Global settings for switching

The global settings for the switching functions are defined here.

Activation of the collected status response

The collected status response can be activated on the device in the ETS.

Extended settings	Global settings for switching	
	Collected status response	No
	Yes	
Assign channel status to 1-bit value	Normal behavior (Pressed=1, Re- leased=0)	
	Inverted	
Delay time sending $(0 \ldots 255$, unit =1 s)	60	

With the collected status response object, you can send the status responses coded bit-by-bit via a 4-byte telegram with a time delay.
Each device (Master / Extension 1 / Extension 2) has its own collected status response object.

The collected status response is intended to save group addresses and to reduce the bus load，e．g．in the case of a Central Off telegram，the 8 channels are grouped together to form a single collected status response．
The four－byte object has the following structure．The upper two bytes indicate which status bit is valid（＂1＂＝valid，＂ 0 ＂＝invalid）．The lower two bytes indicate the statuses（pressed or released）of the channels．

Byte 4								Byte 3								Byte 2								Byte 1							
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$			$\begin{aligned} & \mathrm{O} \\ & \mathbf{0} \\ & 0 \\ & \overrightarrow{0} \\ & \mathrm{Z} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 工 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 工 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 工 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \mathbf{Z} \end{aligned}$			$\begin{gathered} 0 \\ \frac{0}{3} \\ \frac{2}{3} \\ 0 \\ \frac{0}{7} \\ \frac{0}{7} \end{gathered}$	$\begin{aligned} & 10 \\ & \frac{1}{3} \\ & \frac{0}{3} \\ & 0 \\ & 0 \\ & \frac{0}{70} \\ & \end{aligned}$		$\begin{aligned} & m \\ & 3 \\ & \frac{2}{3} \\ & \frac{0}{3} \\ & \frac{0}{7} \\ & \end{aligned}$			$\begin{aligned} & \mathbf{O} \\ & 0 \\ & 0 \\ & 0 \\ & \mathbf{0} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{2} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \mathbf{2} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{2} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{2} \\ & \stackrel{\rightharpoonup}{Z} \end{aligned}$				$\begin{aligned} & \overrightarrow{3} \\ & \frac{0}{1} \\ & 0 \\ & 0 \\ & \frac{0}{0} \\ & \stackrel{\omega}{\omega} \end{aligned}$					

Example：Master with 8 switching channels，channels 2 and 6 are pressed 00000000111111110000000000100010
You can define or invert the value of the collected status response（pressed＝1， released $=0$ or pressed＝0，released＝1）via the parameter Assign channel status to 1 bit value．
Once the set sending delay has expired，the current status of the output channels is sent to the bus．

Group objects

Group object for collected status

No．	Name	Object function	Length	Behavior	Data type
10	Master	Collected status	4 bytes	Send／Read	27.001 Bit－combined info On／Off
11	Extension 1	Collected status	4 bytes	Send／Read	27．001 Bit－combined info
				On／Off	
11	Extension 2	Collected status	4 bytes	Send／Read	27.001 Bit－combined info
					On／Off

Priority of functions for switching

The global priorities for switching are defined here．The safety function has the highest priority．The other priorities can be selected here．

Extended settings	Global settings for switching	
	Priority of functions	Safety－＞Alarm－＞Lock／Prio－＞all other
		Safety－＞Lock／Prio－＞Alarm－＞all other

4.10 Global settings for roller shutter and blind

The global settings for roller shutter and blind are defined here.

Weather alarm function

The weather alarm function can be activated for all roller shutter/blind channels in the ETS.

There are now 5 different weather alarms available, together with their group objects.
The monitoring of the signals of the activated weather sensors can be carried out cyclically. The device then expects a telegram from the relevant sensor within the cycle time set. If such a telegram is not received within the monitoring time, the associated weather alarm is nevertheless triggered for safety reasons (if, for example, the sensor or the cable connection between sensor and blind channel is defective and no message would be sent in the event of a genuine alarm).

Extended settings	Global settings for roller shutter and blind	
	Weather alarm function	Disabled
		Enabled
	Monitoring time for wind alarm 1	Disabled
		$1 \mathrm{~s} \ldots 12 \mathrm{~h}$
	Monitoring time for wind alarm 2	Disabled
		$1 \mathrm{~s} \ldots 12 \mathrm{~h}$
	Monitoring time for wind alarm 3	Disabled
		$1 \mathrm{~s} . .12 \mathrm{~h}$
	Monitoring time for rain alarm	Disabled
		1 s ... 12 h
	Monitoring time for frost alarm	Disabled
		$1 \mathrm{~s} . .12 \mathrm{~h}$

Priority of weather alarms

The global priorities for the weather alarms are defined here.

Extended settings	Global settings for roller shutter and blind Priority of weather alarms
	Wind alarm->Rain alarm->Frost alarm Wind alarm->Frost alarm->Rain alarm
	Rain alarm->Wind alarm->Frost alarm
Rain alarm->Frost alarm->Wind alarm	

Group objects

Group object for weather alarms

No.	Name	Object function	Length	Behavior	Data type
18	Central	Wind alarm 1	1 bit	Received	1.005 alarm
19	Central	Wind alarm 2	1 bit	Received	1.005 alarm
20	Central	Wind alarm 3	1 bit	Received	1.005 alarm
21	Central	Rain alarm	1 bit	Received	1.005 alarm
22	Central	Frost alarm	1 bit	Received	1.005 alarm

Priority of functions for roller shutter and blind

The global priorities for roller shutter and blind are defined here. The safety function has the highest priority. The other priorities can be selected here.

Extended settings	Global settings for roller shutter and blind	
	Priority of functions	Safety ->Alarm ->Weather alarms ->Lock ->All other
		Safety ->Alarm ->Lock ->Weather alarms ->All other
		Safety ->Weather alarms ->Alarm ->Lock ->All other
		Safety ->Weather alarms ->Lock ->Alarm ->All other
		Safety ->Lock ->Alarm ->Weather alarms ->All other
		Safety ->Lock ->Weather alarms ->Alarm ->All other

Calibration

The device calculates the current position of a drive from the running times you have set for the drive and from the control commands it executes. This calculation must be performed because there is no feedback from the drive regarding its position. Even if you have set the running times very precisely, the internally calculated height position will deviate slightly from the actual height position after a number of movements. This is due to mechanical tolerances and weather conditions (temperature fluctuations, frost, rain, etc.).

The device can reset these deviations by means of reference runs. For this purpose, it moves the drives to the upper or lower end position. After the reference run, the internal position calculation starts again from a fixed value. Any deviations that have arisen in the meantime are thus eliminated.

Note: The calibration function is especially important if you work a lot with position commands and high positioning accuracy is required. If the drives are controlled exclusively using the basic functions and position commands do not matter, then you do not need this function.

The calibration function can be activated here in the ETS for all roller shutter/blind channels.

Extended settings	Global settings for roller shutter and blind
Calibration	Disabled
	Enabled

A reference run can be triggered by a group object or after a certain number of movements.

Group objects

No.	Name	Object function	Length	Behavior	Data type
17	Central	Calibration	1 bit	Received	1.010 Start/Stop

The channel-specific settings for the calibrating function can be found in the:
Extended settings for blind / roller shutter --> 131; Extended settings for roller shutter --> 162

4.11 PIN Code for Firmware Update

For security reasons, you must set a valid 4-digit PIN code to block unauthorized updates of the device firmware. The PIN code defined in the ETS must be entered in the Schneider-Electric Firmware Update Tool before downloading the firmware. This prevents unauthorized manipulation of the device firmware via the micro USB interface during distribution.

Extended settings	PIN Code for Firmware Update	
	Please enter PIN Code for Firmware Update (4 digits, 0 ... 9)	1234

PIN codes that are insecure or too simple cannot be selected.
You will receive the following message:
No valid PIN Code for Firmware Update! Please enter a valid PIN Code before you download your configuration!

5 Express settings for dimming

On the Express settings for dimming tab, define basic settings and activate or deactivate other functions.

5.1 Basic functions for dimming

The application provides three basic functions for controlling the brightness of the connected lamps: Switching, Relative dimming and Value dimming.
When you enable the dimming output, other parameters and group objects are displayed.

General	Channel function Master / Extension 1 / Extension 2 settings	Output 1-2 Dimming Output 1-2
Master/Ext. 1/2	Enabled	
Output 1-2: -Dimming	Express settings for dimming	\ldots

Three group objects appear for each output channel to control these basic functions.

- The Switch object (1 bit) for the switching function
- The Dimming object (4 bits) for the relative dimming function
- The Value object (1 byte) for the value dimming function

Group objects

No.	Name	Object function	Length	Behavior	Data type
31	Master Output 1 name of the channel	Switching	1 bit	Received	1.001 switch
32	Master Output 1 name of the channel	Dimming	4 bits	Received	1.007 dimmer step
33	Master Output 1 name of the channel	Value	1 byte	Received	5.001 Percent $(0 \ldots .100 \%)$
46	Master Output 1 name of the channel	Status feedback switching	1 bit	Sending	1.001 switch
47	Master Output 1 name of the channel	Status feedback value	1 byte	Sending	5.001 Percent $(0 \ldots 100 \%)$

The dimming time for the respective function is preset and can be adjusted in the Extended settings for dimming. Dimming time --> 56
Moreover, two group objects are displayed for each output channel, reporting the current switching state and brightness value.

- The Status feedback switch object (1 bit) for the switching state feedback function
- The Status feedback value object (brightness value 1 byte) for the brightness value feedback function

Switching (1 bit)

If the switch object receives a telegram with the value "1", the output will be switched on. In the default settings, the dimming time for switching on is 0.6 s at 100%. The output is switched off with an object value of "0".
The value that is approached when switching on using the switch object, can be defined by means of parameters.

Switch-ON behavior (via switch object)

Master/Ext. $1 / 2$ Output 1-2 -Dimming	Express settings for dimming Switch-ON behavior (via switch object)	Max. brightness
	Last brightness (Memory)	
	Initial brightness in \%	$100(1-100)$

Possible settings:

- Max. brightness:

The output channel is set to the value which you have set in the parameter (B) Maximum brightness in \%.

- Selectable brightness:

For this value, an additional parameter appears. Initial brightness in \% The output is switched to the set initial brightness with a "1" telegram. The value of the initial brightness should not exceed the maximum dimming value. The maximum output brightness is always limited by the maximum dimming value. Higher values for the initial brightness are ignored. If the selected initial brightness is less than the minimum dimming value, this value is also ignored. In this case, the minimum dimming value is used as the starting value.

- Last brightness (memory):

After a "1" telegram, the output is reset to the last brightness value it had before switching off.

Execute the selected switch-ON behavior

Execute switch-ON behavior

You can determine when the aforementioned switch-ON behavior is executed.

Master/Ext. $1 / 2$ Output 1-2 -Dimming	Express settings for dimming	
	Execute the selected switch- ON behavior	Always
		Only if status is "OFF"

Possible settings:

- Always:

This setting executes the respective switch-ON behavior for every "1" telegram. This corresponds to the default settings.

- Only if status is "OFF":

This setting only activates the respective switch-ON behavior if the current brightness value is " 0 ". If the switch object receives a " 1 " telegram when its status is ON, this has no effect. The current brightness is maintained.

Please note that the setting Always start at 50% brightness (ESL/CFL) for compact fluorescent lamps influences the switch-ON behavior (Always start at 50\% brightness (ESL/CFL) --> 48).

Status response for switching

Status response for switching
The value of the signal object of a channel always corresponds to the current output state (ON or OFF). Dimmed corresponds to the ON setting. Every time the state changes from OFF to ON or vice versa, the current object value is sent to the bus.

Dimming (4 bits)

You can use the relative dimming function to dim the output up or down relative to its current value. The step value of the brightness change and the dimming direction are defined by the telegram value.
Telegrams for the relative dimming function are received via the dimming object. After a relative dimming telegram has been received, a new nominal value is calculated using the current value, the received dimming direction and the received step value.
The preset dimming time for relative dimming to 100% is 5.4 s .
Example
A: Minimum brightness in $\%=22 \%$, current output value $=25 \%$

| Dimming brighter telegram with a
 step value of 12.5% | $=>\quad$ New nominal value: $25 \%+12.5 \%=37.5 \%$ |
| :--- | :--- | :--- |
| Dimming darker telegram with a
 step value of 25% | $=\quad$ New calculated nominal value: $37.5 \%-25 \%=12.5 \%$ |

The limit values A : Minimum brightness in \% and B: Maximum brightness in \% cannot be violated in the case of relative dimming.

Dimming object switches channel

You can use the parameter "Dimming object switches channel" to determine the other functions of an output channel when a relative dimming telegram is received.

Possible settings:

- Not:

This parameter setting prevents switching on and off, i.e. the channel remains off or at the minimum dimming value.

- Only On:

The output channel can only be switched on by relative dimming telegrams. If it is switched on and the setpoint falls below A: Minimum brightness in \% using relative dimming telegrams, the output remains switched on at the minimum dimming value.

- Only Off:

The output channel cannot be switched on by relative dimming telegrams. If it is switched on and the setpoint falls below A: Minimum brightness in \% using relative dimming telegrams, the output is switched off.

- On and Off:

The output channel can only be switched on by relative dimming telegrams. If it is switched on and the setpoint falls below A: Minimum brightness in \% using relative dimming telegrams, the output is switched off.
Please note that the setting "Always start at 50\% brightness (ESL/CFL)" for compact fluorescent lamps influences the switch-ON behavior (Always start at 50\% brightness (ESL/CFL) --> 48).

Value dimming (1 byte)

The value dimming function is used to set the required brightness directly. To do this, the value object of the output channel sends the desired brightness value as a percentage between 0% and 100%. The value range is divided up into 255 brightness levels. A level has a step value of approximately 0.4%. The telegrams for dimming with absolute values have a 1-byte data format (0 to 255).
The desired brightness values must lie within the limits which are defined by the minimum and maximum dimming values. If the brightness value exceeds the maximum dimming value, the maximum dimming value will be set as the output value. If the brightness value is lower than the minimum dimming value, this will be set as the output value.
The preset dimming time for value dimming from 0% to 100% is 0.6 s .

Value object switches channel

You can establish the settings for switching the dimming output on and off via the value dimming function using a parameter.

Master/Ext. $1 / 2$ Output 1-2 -Dimming	Express settings for dimming	
	Value object switches channel	Not
		Only On
	Only Off	
		On and Off

Possible settings:

- Not:

This parameter setting prevents switching, i.e. the channel remains at the current value.

- Only On:

The output channel can be switched on by value telegrams. If it is switched on and the value object receives the value 0%, the output remains switched on at the value Minimum brightness in \%.

- Only Off:

The output channel cannot be switched on by value telegrams. If it is switched on and the value object receives the value 0%, the output is switched off.

- On and Off:

The output channel can be switched on by value telegrams. If it is switched on and the value object receives the value 0%, the output is switched off.
Please note that the setting "Always start at 50\% brightness (ESL)" for compact fluorescent lamps influences the switch-ON behavior (Always start at 50\% brightness (ESL/CFL) --> 48).

Status response

Master/Ext. 1/2 Output 1-2 -Dimming	Express settings for dimming

The value of the signal object of a channel always corresponds to the current output value. The object value is sent in the following cases:

- A dimming process is terminated.
- The minimum or maximum dimming value has been reached.
- A dimming process was stopped by manual operation.

5.2 Name of the channel dimming

You can assign a separate name for each channel, e.g. "Light Hall Ground Floor". This individual name is appended to the fixed channel name, e.g. "Master Output 1 - Dimming". The full name of the channel is then, e.g. "Master Output 1 - Dimming Light Hall Ground Floor".

The name of the channel now appears on the parameters, channels and associated group objects.

Master/Ext. $1 / 2$ Output 1-2 -Dimming	Express settings for dimming
	Name of the channel

5.3 Switch object behavior

You can define the behavior of the switch object for each channel.

| Master/Ext. $1 / 2$
 Output 1-2
 -Dimming | Express settings for dimming |
| :--- | :--- | | | |
| :--- | :--- |
| | Switch object behavior | Normal | Inverted |
| :--- |

It can be operated normally or inverted.

5.4 Dimming curve

You can use the dimming curves to adjust the control properties of a channel to the physical characteristics of different lamps.

The following dimming curves can be selected:

Master/Ext. $1 / 2$ Output 1-2 -Dimming	Express settings for dimming	
	Dimming curve	LED lamps
		Halogen lamps

LED lamps

The following dimming curve is stored for LED lamps:
Dimming curve: LED lamps

You will find the parameterized dimming range on the Y -axis.
The minimum brightness (Minimum brightness --> 47) and maximum brightness (Maximum brightness --> 48) can be limited.
The KNX value range ($0-100 \%$) is located on the X-axis.

Halogen lamps

The following dimming curve is stored for halogen lamps:
Dimming curve: Halogen lamps

You will find the parameterized dimming range on the Y -axis.
The minimum brightness (Minimum brightness --> 47) and maximum brightness (Maximum brightness --> 48) can be limited.
The KNX value range ($0-100 \%$) is located on the X -axis.

Incandescent lamps

The following dimming curve is stored for incandescent lamps:
Dimming curve: Incandescent lamps

You will find the parameterized dimming range on the Y -axis.
The minimum brightness (Minimum brightness --> 47) and maximum brightness (Maximum brightness --> 48) can be limited.
The KNX value range ($0-100 \%$) is located on the X -axis.

User-defined dimming curve

A user-defined dimming curve can be stored for special lamps or dimming behavior.

The number of steps (points) in the curve can be set from 0 to 3 .

Number of additional steps=0

Here you receive a linear dimming curve that is limited by the minimum brightness (Minimum brightness --> 47) and maximum brightness (Maximum brightness --> 48).

| Master/Ext. 1/2
 Output 1-2
 -Dimming
 -User-defined dimming
 curve

 A: Minimum brightness in \% Maximum brightness in \% | $\mathbf{2 2}$ |
| :--- | :--- | :---: |

Dimming curve: User-defined dimming curve with number of additional steps=0

You will find the parameterized dimming range on the Y -axis.
The minimum brightness (Minimum brightness --> 47) and maximum brightness (Maximum brightness --> 48) can be limited.
The KNX value range ($0-100 \%$) is located on the X-axis.

Number of additional steps=1

Master/Ext. 1/2 Output 1-2 -Dimming -User-defined dimming curve	User-defined dimming curve	
	A: Minimum brightness in \%	22
	(S1) step 1: KNX value	50
	(S1) step 1: Brightness value	$\mathbf{6 0}$
	B: Maximum brightness in \%	100

Dimming curve: User-defined dimming curve with number of additional steps=1

You will find the parameterized dimming range on the Y -axis.
The minimum brightness (Minimum brightness --> 47) and maximum brightness (Maximum brightness --> 48) can be limited.
The KNX value range ($0-100 \%$) is located on the X -axis.
The additional step S 1 is defined by the coordinates KNX value (S1) and brightness value (S1). The brightness value should always be greater than the previous value and less than the next value. The dimming curve must always rise and must not fall in certain segments.

Number of additional steps=2

Master/Ext. $1 / 2$ Output 1-2 -Dimming -User-defined dimming curve	User-defined dimming curve	
	A: Minimum brightness in \%	22
	(S1) step 1: KNX value	33
	(S1) step 1: Brightness value	48
	(S2) step 2: KNX value	66
	(S2) step 2: Brightness value	74
	B: Maximum brightness in \%	100

Dimming curve: User-defined dimming curve with number of additional steps=2

You will find the parameterized dimming range on the Y -axis.
The minimum brightness (Minimum brightness --> 47) and maximum brightness (Maximum brightness --> 48) can be limited.
The KNX value range ($0-100 \%$) is located on the X-axis.
The additional steps S1+S2 are defined by the coordinates KNX value (S1/S2) and brightness value (S1/S2). The brightness value should always be greater than the previous value and less than the next value. The dimming curve should always rise and must not fall in certain segments.

Number of additional steps=3

Dimming curve: User-defined dimming curve with number of additional steps=3

You will find the parameterized dimming range on the Y -axis.
The minimum brightness (Minimum brightness --> 47) and maximum brightness (Maximum brightness --> 48) can be limited.
The KNX value range ($0-100 \%$) is located on the X -axis.
The additional steps S1+S2+S3 are defined by the coordinates KNX value (S1/S2/ S3) and brightness value (S1/S2/S3). The brightness value must always be greater than the previous value and less than the next value. The dimming curve must always rise and must not fall in certain segments.

5.5 Dimming range

The technical dimming range is defined by the range between the minimum and maximum brightness of a lamp, and can be set with the aid of a dimmer.

The minimum brightness value that can be set corresponds to a dimming value of 1%, and the maximum brightness value that can be set corresponds to a dimming value of 100%.

The dimming range can be limited further using the software application. This limit can be set individually for each output channel.

Dimming curves can be selected for different lamps.

5.6 Minimum brightness

Faults such as flickering may occur at minimum brightness values. The brightness of the lamps may have fallen below the minimum value. In this case, increase the minimum dimming value.
If lamps can only be dimmed slightly, check whether the minimum dimming value has been set too high (range 1-25\%).

5.7 Maximum brightness

In some situations, it may not be possible to discern changes to the brightness at maximum brightness values, or the lighting may generally be too bright. In such cases, you can reduce the maximum dimming value.

If lamps can only be dimmed slightly, check whether the maximum dimming value has been set too low (range 76-100\%).

5.8 Always start at 50\% brightness (ESL/CFL)

Compact fluorescent lamps often need a minimum voltage for the ignition process. In order to ensure reliable starting, a minimum brightness can be set for after they have been switched on.

Master/Ext. $1 / 2$ Output 1-2 -Dimming	Express settings for dimming	
	Always start at 50% brightness (ESL/CFL)	Disabled
		Enabled

This setting ensures that 50% brightness is switched on for approx. two seconds in order to ignite the lamp. The brightness is then altered to the required dimming value.

The memory function is selected. This function ensures that, where possible, the previous brightness value is restored when the lamp is switched on again. The minimum dimming value is 20%.

Action	Result
Switch off at 30\% brightness (1 bit)	Lighting is switched off
Switch on (1 bit)	Switch on at 50% brightness
Automatic brightness correction	Dim down to 30% after approx. 2 s
Send 10% dimming value (1 byte)	Dim down to 20% (min. dimming value)

5.9 Dimming operation mode

The device is a types of universal dimming actuator and detects connected loads automatically. Load detection determines whether an inductive, capacitive or ohmic load is connected. However, there is also the option of selecting an alternative operating mode for special LED or energy-saving lamps (ESL/CFL) using the ETS parameters.

LED	Light emitting diode
ESL	Energy-saving lamp
CFL	Compact fluorescent lamp

In order to ensure that different loads are adjusted optimally, further settings can be altered for each channel. You can adapt the starting behavior on switching on to the ESL/CFL ignition process. Always start at 50\% brightness (ESL/CFL) --> 48

The dimming range can generally be adapted individually for each channel for all loads. Dimming range --> 47

For information on special dimming curves for LED, halogen and incandescent lamps or user-defined, see Section Dimming curve --> 41

In this section you will learn about automatic load detection and the alternative dimming operation mode "Leading edge phase LED, ESL/CFL (RL-LED)", and find out which combinations of different loads are permitted.

The following dimming operating modes can be selected:

- RC operating mode $=$ trailing edge phase (automatic)
- RL operating mode = leading edge phase (automatic)
- RL-LED operating mode = leading edge phase LED, ESL/CFL (can be set via ETS)
Load detection is only possible if the voltage and frequency are within the permissible range and there is no short circuit or overload.

Automatic load detection

In general, the connected loads are detected automatically for each channel. The load detection for each channel is performed as soon as the loads are connected and the mains voltage has been switched on.

The load is also checked with respect to inductive properties during continuous operation, and switched to RL operating mode if necessary. Please note that loads may only be exchanged when the mains voltage is switched off.

Special dimming mode (RL-LED)

Normally, trailing edge phase (RC) is set automatically for LED or energy-saving lamps (ESL/CFL).

You can also dim special lamps in leading edge phase mode (RL-LED). To do this set the dimming mode Special (RL/LED) in the ETS. You should select this mode in the following cases:

- If the manufacturer of the light expressly recommends the leading edge phase or RL operating mode.
- If the lowest dimming value in the automatically selected operating mode is still too bright, and this operating mode is not prohibited by the manufacturer of the light. Switching to dimming operation mode RL-LED is particularly useful if the dimming range was previously deemed too small Dimming range --> 47.
The setting is activated once the application has been loaded. The inductive properties of the load are also checked in this operating mode, and the system will switch to the RL operating mode if necessary.
Load detection is normally performed when switching on or dimming (value >0) for the first time after the mains voltage has been restored. Please note that loads may only be exchanged when the mains voltage is switched off.

Using LED and ESL/CFL lamps

- Do not use LED lamps in conjunction with energy-saving lamps (ESL/CFL). If possible, use lamps from the same manufacturer and of the same type in order to achieve satisfactory dimming properties.
- The max. power of each channel is generally lower for LED or energy-saving lamps than for other loads. The maxumum loads and derating based on the ambient temperature and devices configuration is defined in the user manual.
- In Special (RL-LED) mode, the values are significantly reduced once again.
- The max. power depends heavily on the LEDs and energy-saving lamps used. If the load is too high, the actuator dims to minimum brightness or switches off directly. If this happens, reduce the number of lights.

Loads per channel

- Incandescent and halogen lamps (ohmic load).
- Low-voltage halogen lamps with dimmable, wound transformers (inductive load).
- Low-voltage halogen lamps with dimmable, electronic transformers (capacitive load).
- A combination of ohmic and inductive loads:

Halogen and incandescent lamps, halogen lamps with wound transformers.

- A combination of ohmic and capacitive loads: Halogen and incandescent lamps, halogen lamps with electronic transformers, LED or ESL/CFL.
- Dimmable ESL/CFL.
- Dimmable LED lamps.

More detailed information on the minimum and maximum permissible loads can be found in the "Technical data" section of the user manual. More information on dimmable LED and energy-saving lamps can be found in the Dimmer tool.
Read the user manual carefully. This section contains safety information that refers exclusively to the selection of the load.

CAUTION

The device can be damaged.

- Only operate the device according to the specifications listed in the technical data.
- Only connect dimmable transformers to the dimmer when you use transformers.
- Do not connect a combination of capacitive and inductive loads to one channel.
- Do not connect a combination of LED or ESL/CFL lamps and inductive loads such as wound transformers to one channel.
- Do not use dimmers on socket outlets. The risk of overload and connecting unsuitable devices is too high.

5.10 Scenes

You can use the scene functions when you wish to give the user the option of modifying different room functions simultaneously via just one bus telegram. Loading a room scene allows you, for example, to dim the room lighting to a required value, move the blinds into a required position, set the heating control to daytime operation and switch on the power supply to the socket-outlets in a room. Since these functions have different telegram formats and the telegram values can also have different meanings (e.g. value "0" means OFF for lighting and OPEN for blinds), the same setting would require many different telegrams without the scene function.

The scene function allows you to integrate the actuator into a scene controller. There are memory slots for up to 16 different scene values for each output channel. Each of these 16 scene memories can be assigned to one of 64 possible scene numbers (0-63 or 1-64). You can save brightness values as scene values in the form of percentages. If the actuator receives a telegram which loads a scene number, the assigned output channel will be dimmed to the saved brightness level. The brightness values for the individual scenes saved during commissioning can be overwritten by the user at a later point if changes are required.

For telegram values from "0" to "63", the brightness values saved for this scene number will be loaded and the dimmer outputs set accordingly.

For telegram values from "128" to "191", the current brightness values of the assigned dimming outputs will be saved as new scene values for the transmitted scene number.

Enabling scenes

Master/Ext. 1/2 Output 1-2 -Dimming	Express settings for dimming	
	Scenes	Disabled
	E	Enabled
	Scene settings	
-Scenes settings		

Following enabling of the scenes, the group object appears.

Group objects

No.	Name	Object function	Length	Behavior	Data type
38	Master Output 1 name of the channel	Scene	1 byte	Received	18.001 scene control

Number of scenes

Master/Ext. $1 / 2$ Output $1-2$	Scene settings
-Dimming	
-Scenes settings	Required number of scenes $\mathbf{1 (1 - 1 6)}$

You can use the scene function to include multiple channels in a scene control. Up to 16 different scenes are available for each output channel.

Each of the up to 16 scenes can be disabled again.

Master/Ext. 1/2 Output 1-2 -Dimming	Scene settings	
-Scenes settings	Scene 1 (1-16)	Disabled
		Enabled
	Scene 1 description	
	Scene 1 address (0-63) Dependent: Global settings for scenes --> 27	Scene address 0-63
	Scene 1 address (1-64) Dependent: Global settings for scenes --> 27	Scene address 1-64
	Scene 1 brightness in \%	50 (1-100)

For clarity, a short description can be stored for each scene.
Each of these scenes can be assigned one of 64 possible scene addresses 0 to 63 (corresponding to telegram values $0-63$) or 1 to 64 (corresponding to telegram values $0-63$). This depends on the global settings for scenes. Global settings for scenes --> 27

You can store the brightness value as scene values for each output channel.

Time delay for scene processing

To avoid high switch-on currents when switching to a complex scene, you can parameterize a time delay for each output channel.

Master/Ext. $1 / 2$ Output 1-2 -Dimming	Scene settings
-Scenes settings	Time delay for scene process- ing (0...255, unit $=100 \mathrm{~ms})$

Calling and saving scene values

The scene values for the output relays are called using the "Scene object" object. After receiving a scene telegram, the device evaluates the sent scene address and dims/switches the outputs to the saved scene values.

If the "scene object" receives a scene telegram with learning bit "1", then for all scenes assigned to the received scene address, the current brightness value is saved as the new scene value.

Note: If a scene address within a channel is assigned to multiple scenes (incorrect parameterization), only the last scene found with this scene address is called or saved. You can avoid this by assigning different scene addresses within a channel.

Telegram format

Telegrams for the scene function have the data format: $L \times D D D D D D$.
L = learning bit
X = not used
DDDDDD = called scene address
If the learning bit in a telegram has the value " 0 ", then the brightness values saved for the scene address are called and set.

If the learning bit receives the value " 1 ", then the current output states are saved as new scene values for the received scene address.

Take the scene address ($0-63$) and add 128 to get the value for learning the scene.
Examples:

Telegram value	Binary	Hexadecimal	Scene address
0	00000000	00	Call scene address 0
1	00000001	01	Call scene address 1
29	00011101	$1 D$	Call scene address 29
57	00111001	39	Call scene address 57
63	00111111	$3 F$	Call scene address 63
$128(0+128)$	10000000	80	Learning scene address 0
$129(1+128)$	10000001	81	Learning scene address 1
$157(29+128)$	10011101	$9 D$	Learning scene address 29
$185(57+128)$	10111001	B9	Learning scene address 57
$191(63+128)$	10111111	BF	Learning scene address 63

Overwrite scene values during download

Master/Ext. 1/2
Output 1-2 Scene settings
-Dimming
-Scenes settings
Overwrite scene values of
actuator during download
Disabled
Enabled
If you have enabled the parameter "Overwrite scene values in actuator during download", the scene values saved in the device will be overwritten with your preset values on downloading. If you do not want to overwrite the values in the device when downloading, you must disable the parameter. In this case, the parameterized scene values are only written to the device memory during the first download. If an application download is then carried out, the scene values in the device memory are retained.

Priority

The scene function has the same priority as the normal switching function via the "switch object". This should be taken into account with regard to the priority of the higher-level functions.

Same dimming time for central function and scenes

In the global (extended) settings, you can activate the same dimming time for central function and scenes. (Same dimming time at central function and scenes --> 30)

After general activation of the same dimming time, you can link the scene function of an output channel with this function.

Master/Ext. $1 / 2$ Output 1-2 -Dimming	Scene settings
-Scenes settings	Same dimming time

5.11 Central function dimming

Enabling a central function for each output

The central function is enabled or disabled here for each switch output.

Master/Ext. 1/2 Output 1-2 -Dimming	Express settings for dimming	
	Central function	Enabled
		Disabled

The global settings and explanations of the central function can be found in the chapter General settings (Enable central functions --> 23).

5.12 Activating extended settings for dimming

Master/Ext. 1/2 Output 1-2 -Dimming	Express settings for dimming	
	Extended settings for dimming	No
		Yes

To activate the extended settings for dimming, you must enable them here.

6 Extended settings for dimming

On the Express settings for dimming tab, activate the Extended settings for dimming.

Master/Ext. 1/2 Output 1-2 -Dimming	Express settings for dimming	
	Extended settings for dimming	No
6	Yes	
-Dimming times	Dimming times	
-Time settings	Staircase lighting time	
	On-delay time	
	Off-delay time	
-Locking \& Priority settings	Priority function	
	Locking function	
-Safety and alarm settings	Safety function	
	Alarm function	
	Failure and download behavior	

6.1 Dimming time

Dimming times

Master/Ext. 1/2 Output 1-2 -Dimming	Dimming times	
-Dimming times	Objects enabled for dimming time	Disabled
		Enabled
	Time for switching (1 bit) (0.6 s...99:59.9 min)	0.6 s
	Time for dimming (4 bits (0.6 s...99:59.9 min)	5.4 s
	Time for values (8 bits) (0.6 s...99:59.9 min)	0.6 s
	Time for priority (1 bit) (0.6 s...99:59.9 min)	1.2 s
	Time for scenes (1 bit) (0.6 s...99:59.9 min)	9.6 s

Once the objects for dimming time have been enabled, the following group objects appear.

Group objects

Group objects of staircase lighting time

No.	Name	Object function	Length	Behavior	Data type
40	Master Output 1 name of the channel	Time for switch- ing	2 bytes	Received	7.004 time (100 ms)
41	Master Output 1 name of the channel	Time for dim- ming	2 bytes	Received	7.004 time (100 ms)
42	Master Output 1 name of the channel	Time for values	2 bytes	Received	7.004 time (100 ms)
43	Master Output 1 name of the channel	Time for priority	2 bytes	Received	7.004 time (100 ms)
44	Master Output 1 name of the channel	Time for scenes	2 bytes	Received	7.004 time (100 ms)

6.2 Time settings

Staircase lighting time function (staircase timer)

As the name suggests, this function is used to switch on a consumer, e.g. the light in a staircase, via a bus telegram (dimming up) and automatically switch it off again after a set duration (dimming down). Therefore, no manually or automatically generated bus telegram is required for switching off. The actuator carries out the switching off operation independently and under time control.

Two types of staircase lighting time function are available:

Master/Ext. $1 / 2$ Output 1-2 -Dimming	Staircase lighting time		
-Time settings	Staircase lighting time	Disabled	Fix
:---			

Following enabling of the corresponding staircase lighting time function, the relevant group object appears.

Group objects of staircase lighting time

No.	Name	Object function	Length	Behavior	Data type
37	Master Output 1 name of the channel	Staircase fix	1 bit	Received	1.010 Start/Stop
37	Master Output 1 name of the channel	Staircase vari- able	2 bytes	Received	7.005 Time (s)

Staircase lighting time fix

With Staircase lighting time fix, you can parameterize a fixed staircase lighting time for each channel. The staircase lighting time can be parameterized between 5 seconds and 1 hour. This function makes the Staircase fix object (1 bit) available to you.

Master/Ext. 1/2 Output 1-2 -Dimming	Staircase lighting time fix	
-Time settings	Manual switching off	Active
		Not active
	Time extension	Not retriggerable
		Retriggerable
	1	Retriggerable and adding
	Max. number of additions	2 (2-5)
	Duration time	$2 \mathrm{~min}(5 \mathrm{~s}-1 \mathrm{~h})$
	Switch-Off Prewarning	Disabled
	5	Enabled
	Warning starts $\text { (} 5 \ldots 255 \text {, unit }=1 \mathrm{~s} \text {) }$	30 (before end)
	Note: Staircase lighting time must be longer than or equal to the warning time	

Staircase lighting time variable

With Staircase lighting time variable, a time between 0 s and 65535 s is defined via the object Staircase variable (2 bytes DPT 7.005 time (s)), e.g. using a button. This enables you to specify the length of the staircase lighting time from different places depending on the desired situation.

Master/Ext. 1/2 Output 1-2 -Dimming	Staircase lighting time variable	
-Time settings	Manual switching off	Active
		Not active
	Time extension	Not retriggerable
		Retriggerable
		Retriggerable to the higher value
	5	Retriggerable and adding
	Max. number of additions	2 (2-5)
	Switch-Off Prewarning	Disabled
	5	Enabled
	Warning starts (5...255, unit = 1s)	30 (before end)
	Note: Staircase lighting time must be longer than or equal to the warning time	

Manual switching off

Both staircase lighting time functions enable you to switch off the staircase lighting time prematurely. After receiving the object value 0 , the output is dimmed to the Off position. T_{s} is the time for switching (1 bit) with default 0.6 s
Manual switching off = Active ("0" telegram)

[^0]

A telegram with the object value 0 has no effect. The set staircase lighting time continues to run normally until the end.

Time extension

If you want to restart the staircase lighting time before it has elapsed or add up the staircase lighting time, you must select the staircase lighting time Retriggerable or Retriggerable and adding or Retriggerable to the higher value. The staircase lighting time is then restarted or added using another "1" telegram.

Time extension $=$ Retriggerable

Once a new telegram with the object value "1" has been received, the staircase lighting time is restarted.

Time extension = Retriggerable and adding

Once one or more new telegrams with the object value "1" have been received, the staircase lighting time is added to the previous staircase lighting time. The number of additions can be set. You can parameterize a maximum of 5 additions of the staircase lighting time. For example, you can add up the staircase lighting time by pressing a separate button several times.

Time extension $=$ Not retriggerable

However, if the staircase lighting time is not retriggerable, the output will switch off/ dim at exactly the moment the time elapses. If the Manual switching off function is activated, the staircase lighting time can be terminated prematurely with a "0" telegram.

Prewarnings

If you have activated Switch-OFF Prewarning for staircase timer then you can set a warning time as a period between 5 s and 255 s (= 4 min 15 s). This warning time determines how long the dimming-down procedure should last.

Staircase lighting time function with Switch-Off Prewarning

Staircase lighting time function in combination with on-delay and off-delay

Combining a staircase lighting time function with an on-delay results in a delayed start of the staircase lighting function.

The result of combining a staircase lighting time function with an off-delay depends on how you have defined the staircase lighting time function:

In the case of the staircase lighting time function with Manual switching off ("0" telegram), the off-delay is started if a premature switch-off telegram is received on the "staircase lighting time object". After the off-delay time has elapsed, the output is switched off.

In the case of the staircase lighting time function without Manual switching off, receipt of a switch-off telegram on the "staircase lighting time object" has no effect. The staircase lighting time function continues until the end and switches off the output. An off-delay cannot be set.

Staircase lighting time function with off-delay

For staircase lighting time functions with Manual switching off and warnings activated, the staircase lighting time function is immediately deactivated with a warning when an "Off" telegram is received. The off-delay elapses. No warning is generated.

Priority

If the output of the actuator is switched to a new switch position by a higher priority function during an ongoing staircase lighting time, the relay switches to the new position immediately. The most recent switching telegram is saved and delay times and staircase lighting times continue.

On-delay and off-delay

Due to the delay functions, the change of output states is not carried out immediately after receipt of a telegram, but only after the set delay time has elapsed: After the object value "1" has been received, the on-delay delays the switching of the output from the Off state to the On state.

After the object value "0" has been received, the off-delay delays the switching of the output from the On state to the Off state.

You can also use both functions together with a single channel.

On-delay

Master/Ext. 1/2 Output 1-2 -Dimming	On-delay time	
-Time settings	On-delay time	Enabled
		Disabled
	Works on Switch object	Yes (Yes/No)
	Works on Dimming object	Yes (Yes/No)
	Works on Value object	Yes (Yes/No)
	Works on Staircase object	No (Yes/No)
	Works on Scene object	No (Yes/No)
	On-delay mode	Not retriggerable
		Retriggerable
	Output during On-delay	Switched off
		At minimum brightness
	On-delay time	$1 \mathrm{~s}(0 \mathrm{~ms}-1 \mathrm{~h})$

Off-delay

Master/Ext. 1/2 Output 1-2 -Dimming	Off-delay time	
-Time settings	Off-delay time	Enabled
		Disabled
	Works on Switch object	Yes (Yes/No)
	Works on Value object	Yes (Yes/No)
	Works on Staircase object	No (Yes/No)
	Works on Scene object	No (Yes/No)
	Off-delay mode	Not retriggerable
		Retriggerable
	C	Retriggerable and adding
	Max. number of additions	2 (2-5)
	Off-delay time	$1 \mathrm{~s}(0 \mathrm{~ms}-1 \mathrm{~h})$

Works on object

For each channel, you can parameterize whether the delay affects the switch object, dimming object or value object, or multiple objects in combination.

Type of delay

Delay times can be parameterized for each channel. You can use parameters to define the set delays as Retriggerable or Not retriggerable. In the case of a retriggerable on-delay, the delay time is restarted when a "1" telegram is received. In the case of retriggerable off-delays, the delay time is restarted when a "0" telegram is received.

Retriggerable on-delay ("1" telegram)

Retriggerable off-delay ("0" telegram)

Moreover, for the off-delay, you can also select Retriggerable and adding. The delay time is added when the same telegram value is received, e.g. using a separate button. You can define the maximum number of additions.

In the case of not retriggerable delays, by contrast, the output will switch off at exactly the moment the time elapses.

Not retriggerable on-delay

Not retriggerable off-delay

Interrupting a delay function

If a delay function is started by receiving a new object value and the output channel receives a telegram with the opposite object value during the current delay time, the delay function is canceled. The output is not switched/dimmed:
Receipt of the object value " 0 " interrupts an active on-delay.
Receipt of the object value " 1 " interrupts an active off-delay.
Priority
If the output of the actuator is switched to a new state by a higher-level function during an active delay time, the output switches/dims immediately.

6.3 Locking \& Priority settings

The following functions are available:

Master/Ext. $1 / 2$ Output 1-2 -Dimming	Priority function
-Locking \& Priority settings	Higher priority function
	Disabled
	Priority function
Locking function	

Priority function (priority control)

If you have chosen the priority function (known in other devices as priority control), a new group object called Priority is available for this channel.

No.	Name	Object function	Length	Behavior	Data type
35	Master Output 1 name of the channel	Priority	2 bits	Received	2.001 Prio. Switching

Master/Ext. 1/2 Output 1-2 -Dimming -Locking \& Priority settings	Priority function	
	Higher priority function	Priority function
	Behavior at the start of "On priority"	No reaction
		Switch Off
	5	Switch On at selectable brightness
	Brightness at start of "On priority" in \%	100 (1-100)
	Behavior at start of "Off priority"	No reaction
		Switch Off
	5	Switch on at selectable brightness
	Brightness at start of "Off priority" in \%	100 (1-100)
	Behavior at end of priority	No reaction
		Switch Off
		Follows previous function
	5	Switch On at selectable brightness
	Brightness after end of priority in \%	100 (1-100)
	Behavior after bus voltage recovery	Disabled
		Enabled, On
		Enabled, Off
		As before bus voltage failure

The object values of the priority object have the following meaning:

Value bit 1	Value bit 2	Behavior of output
1	1	Activate priority, output state "On"
0	1	Deactivate priority, output state dependent on parameter Behavior at end of priority
1	0	Activate priority, output state "Off"
0	0	End of priority, output state dependent on parameter Behavior at end of priority

The priority is enabled if the value " 1 " is received on bit 1 . The assigned output is then switched/dimmed, depending on bit 2, to "On" (bit 2 = "1") or "Off" (bit 2 = "0")

An active priority is terminated again by a new telegram with the value " 0 " on bit 1. As long as a priority function is active, the channel concerned cannot be controlled by the "switch object" and the advanced functions (central function, time functions, scene function).

After the end of a priority, the behavior of the output is determined by the parameter "Behavior at end of priority".

The setting "Follows currently valid state" has the following effect:
During the active priority, all switching commands of subordinate functions are tracked by the application and the switching state is tracked internally. In this way, at the end of the priority, the switching state can be set that would currently have been set without the priority.

Behavior after bus voltage recovery

Using the parameter "Behavior after bus voltage recovery", you can define the reaction of the channel to bus voltage recovery and the output state:

- Disabled

Priority remains deactivated. The switching state of the channel results from the other higher-level functions or from the set switching behavior after bus voltage recovery.

- Enabled, Off

The priority is automatically activated on bus voltage recovery and the output is switched to "Off".

- Enabled, On

Priority is automatically activated on bus voltage recovery and the output is switched to "On".

- As before bus voltage failure

The priority is brought to the state it had before the bus voltage failure. If the priority was previously active, the output is switched to the state it had previously.

Locking function

You can use the locking function to switch off a specific channel or to switch/dim it to a value and lock it in that position. The state of the output channel cannot be changed by other control commands as long as the lock is active. You can enable the locking function individually for each switching channel.

Master/Ext. 1/2 Output 1-2 -Dimming	Locking function	
-Lock \& Priority settings	Higher priority function	Locking function
	Locking	At object value "1"
		At object value "0"
	Behavior at start of locking	No reaction
		Switch Off
	5	Switch on at selectable brightness
	Brightness at start of locking in \%	100 (1-100)
	Behavior at end of locking	No reaction
		Switch Off
		Follows previous function
	5	Switch on at selectable brightness
	Brightness at end of locking in \%	100 (1-100)
	Behavior after download	Disabled
		Enabled
		As before download
	Behavior after bus voltage recovery	Disabled
		Enabled
		As before bus voltage failure

Once the locking function has been enabled, a new group object called Lock is available for the switching channel. You can activate and deactivate a channel lock using the locking object.

No.	Name	Object function	Length	Behavior	Data type
35	Master Output 1 name of the channel	Locking	1 bit	Received	1.003 Enable

If the locking object receives a telegram with the object value that you set for the parameter Lock, all other channel functions are disabled. You can define the reaction using the parameter Behavior at start of locking.

If the locking object receives a telegram with the object value opposite of that for activation, the lock is canceled and the output adopts the state that you defined in the parameter Behavior at end of locking.

The locking function always switches without a delay. During a lock, the most recent switching telegram is saved and delay times and staircase lighting times continue.

Locking behavior after download

After a download, the lock function is also set as in the case of bus voltage recovery. The parameter Behavior after download determines which state is set.
If the parameter Behavior after download is set to the value As before download, the locking function is activated as before and the output is controlled accordingly.

Locking behavior after bus voltage recovery

- Disabled

The locking function is not activated after a bus voltage recovery, regardless of the state it had before the bus voltage failure.

- Enabled

After a bus voltage recovery, the locking function becomes active and the output is switched to the state that you defined via the parameter Behavior at start of locking. If you have set the value No reaction here, the output is locked in its current state.

- As before bus voltage failure

The locking function is brought to the state that was active before the bus voltage failure. If the locking function was active, the output is controlled by its settings in the parameter Behavior at start of locking.

6.4 Safety and alarm settings

Safety function dimming

The global safety function is activated on the Extended settings tab with the parameter Device safety and the global settings are parameterized there. Device safety --> 25

The effect of the safety function can be parameterized here for each channel. You can enable the safety function individually for each switching channel.

Master/Ext. 1/2 Output 1-8 -Switching	Safety function	
-Safety and alarm settings	Safety function	Disabled
5		Enabled
	Behavior at start of safety	No reaction
		Switch Off
	5	Switch on at selectable brightness
	Brightness at start of safety in \%	100 (1-100)
	Behavior at end of safety	No reaction
		Switch Off
		Follows previous function
	5	Switch on at selectable brightness
	Brightness at end of safety in \%	100 (1-100)
	Device safety --> 25	
	Cycle time monitoring safety	ject >0
	Behavior at exceeding cycle time	No reaction
		Switch Off
	$\underline{5}$	Switch on at selectable brightness
	Brightness on exceeding cycle time in \%	100 (1-100)

Following global enabling of the device safety, the group object appears.

Group objects

No.	Name	Object function	Length	Behavior	Data type
23	Central	Safety	1 bit	Received	1.005 alarm

The safety function is activated if the safety object receives a telegram with the object value that you defined with the parameter Device safety (Device safety --> 25). You can define the reaction using the parameter Behavior at start of safety.

If the safety object receives a telegram with the object value opposite of that for activation, the safety function is canceled and the output adopts the state that you defined in the parameter Behavior at end of safety.

The device then waits for a telegram from an external sender within the globally set cycle time. If such a telegram is not received within the monitoring time, the parameter Behavior at exceeding cycle time is used to determine what is to happen.

Priority

The safety function is a 1-bit group object with the highest priority. This means that this object takes precedence over the following group objects:

- Alarm object / Lock object / Priority object

Priority of functions for switching --> 32

- Scene object
- Central switch object
- Staircase fix / Staircase variable object
- Switch object

Alarm function

In the case of an alarm, the alarm function can be used to set each output to a desired alarm state. The output is disabled for further operation. Only a higher-level function with a higher priority can still be used to switch the output to a different state. You can activate the alarm function individually for each output channel. The alarm function can be parameterized here for each channel.

Master/Ext. 1/2 Output 1-8 -Switching	Alarm function	
-Safety and alarm settings	Alarm function	Disabled
5		Enabled
	Alarm	At object value "1"
		At object value "0"
	Behavior at start of alarm	No reaction
		Switch Off
	$\underline{5}$	Switch on at selectable brightness
	Brightness at start of alarm in \%	100 (1-100)
	Behavior at end of alarm	No reaction
		Switch Off
		Follows previous function
	5	Switch on at selectable brightness
	Brightness after end of alarm in \%	100 (1-100)
	Behavior after bus voltage recovery	Disabled
		Enabled
		As before bus voltage failure

Following enabling, the group object for this channel appears.

Group objects

No.	Name	Object function	Length	Behavior	Data type
36	Master Output 1 name of the channel	Alarm	1 bit	Received	1.005 alarm

Object values for alarm

The alarm function is activated if the alarm object receives a telegram with the object value that you defined with the parameter Alarm. The reaction is defined by the parameter Behavior at start of alarm.

If the alarm object receives a telegram with the object value opposite of that for activation, the alarm function is canceled and the output adopts the state that you defined in the parameter Behavior at end of alarm.

- At object value "1":

The object value " 1 " switches on the alarm function. If the object value " 0 " is received, the alarm function is switched off again.

- At object value "0":

The object value " 0 " switches on the alarm function. A telegram with the object value " 1 " deactivates the function again.

Behavior of the alarm after bus voltage recovery

- Disabled

The alarm function is not activated after a bus voltage recovery, regardless of the state it had before the bus voltage failure.

- Enabled

After a bus voltage recovery, the alarm function becomes active and the output is switched to the state that you defined via the parameter Behavior at start of alarm.

- As before bus voltage failure The alarm function is brought to the state that was active before the bus voltage failure. If the alarm function was active, the output is controlled by its settings in the parameter Behavior at start of alarm.

Priority

The alarm function is a 1-bit group object with high priority. The device safety function has the highest priority. The priority order for switching can be defined globally (Priority of functions for switching --> 32). The alarm object takes precedence over the following group objects:

- The priority relative to the locking object / priority object is defined centrally for switching: Priority of functions for switching --> 32
- Scene object
- Central switch object
- Staircase fix / Staircase variable object
- Switch object

Failure and download behavior

You can enable this function individually for each dimming channel. The behavior of the dimming output in the case of a bus voltage failure / bus voltage recovery and application download is defined.

Master/Ext. 1/2 Output 1-2 -Dimming	Failure and download behavior	
-Safety and alarm settings	Failure and download behavior	Disabled
C		Enabled
	Output after bus voltage failure	No reaction
		Switch Off
	5	Switch on at selectable brightness
	Brightness after bus voltage failure in \%	100 (1-100)
	Output on bus voltage recovery	As before bus voltage failure
		No reaction
		Switch Off
	C	Switch on at selectable brightness
	Brightness after bus voltage recovery in \%	100 (1-100)
	Output at end of download	As before download
		No reaction
		Switch Off
	C	Switch on at selectable brightness
	Brightness after download in \%	100 (1-100)

Output behavior after bus voltage failure

If the bus voltage falls below 18 V , the output can be switched to a parameterized state. The output can be defined as either Switch off or Switch on at selectable brightness, or remain in the state it had before the failure (No reaction). At the same time, the current state of the output is saved in the device.

Possible settings:

- No reaction

The output channel remains at its current brightness value. If time functions (staircase lighting time function, on-delay, off-delay) are currently active, they are canceled.

- Switch Off

The output channel is switched off.

- Switch on at selectable brightness

The initial brightness is determined by another parameter. The selectable brightness can be set between 1% and 100%.

NOTE

Behavior of blind and shutter outputs has changed.
The Dimmer Master does not have enough power to move all blind and shutter channels into position or to move them up or down. Only the following options are available here:

- Relay state after bus voltage failure: No reaction
- Relay state after bus voltage failure: Stop

Behavior of the output after bus voltage recovery

In the case of bus voltage recovery, the output can adopt a parameterized state.

Possible settings:

- No reaction

The output channel remains at its current brightness value.

- Switch Off

The output channel is switched off.

- Switch on at selectable brightness

The initial brightness is determined by another parameter. The selectable brightness can be set between 1% and 100%.

- As before bus voltage failure With the parameter "As before bus voltage failure", the output adopts the state that was saved in the device at the time of the bus voltage failure. Any subsequent manual switchings are overwritten.

Priority:

The reaction to the behavior set here for bus voltage recovery has a low priority. If a function with a higher priority is activated for the output directly after bus voltage recovery, the settings described below apply to these functions.

States caused by higher-priority functions (higher-level function) take precedence over behavior after bus voltage recovery.

Behavior after download

After the ETS download, the output can adopt a parameterized state.
If an internal defect or a faulty download results in a state in which the application is not operational, the device will not react.
If you wish to activate the behavior after ETS download for an output channel, you must set the parameter "Output at end of download".

Possible settings:

- No reaction

The output channel remains at its current brightness value.

- Switch Off

The output channel is switched off.

- Switch on at selectable brightness

The initial brightness is determined by another parameter. The selectable brightness can be set between 1% and 100%.

- As before download The output executes the behavior set before the download. Any subsequent manual switching is overwritten. If a higher-level function (priority or lock) is active, the behavior you defined for these functions will be executed.

Priority

States caused by higher-priority functions take precedence over behavior after ETS download.

7 Express settings for switching

On the Express settings for switching tab, define basic settings and activate or deactivate other functions.

To switch electrical loads, you can set the channel function of the device to Switching mode. The operating mode is selected for each output on the Defining channel functions --> 20 tab:

General settings	Channel function Master / Extension 1 / Extension 2 Output 1-8	Switching
Master/Ext. 1/2 Output 1-8 -Switch - Switching Express settings for switching		

7.1 Name of the channel for switching

You can assign a separate name for each channel, e.g. "Light Hall Ground Floor". This individual name is appended to the fixed channel name, e.g. "Master Output 1 - Switch". The full name of the channel is then, e.g. "Master Output 1 - Switch Light Hall Ground Floor".

The name of the channel now appears on the parameters, channels and associated group objects.

Master/Ext. 1/2
Output 1-8-Switch Express settings for switching
-Switching
Light Hall Ground Floor

7.2 Switching mode

Switching

You can choose between the switching modes Switching and Blinking. In Switching mode, the relay opens and closes depending on the KNX telegram and the setting for the contact mode.

Master/Ext. 1/2 Output 1-8 -Switch - Switching	Express settings for switching	
	Switching mode	Switching Blinking
	Contact mode	Normally opened Normally closed

The settings for Output 1 are described below, but apply equally to all outputs.
If you select switching mode Switching for output 1 on the master, an ETS channel with the name Master Output 1 - Switch +Name of the channel will be created. All the group objects for this output are located here.

No.	Name	Object function	Length	Behavior	Data Type
31	Master Output $1 \&$ (name of the channel)	Switching	1 bit	Received	1.001 switch
37	Master Output $1 \&$ (name of the channel)	Status feedback	1 bit	Sending	1.001 switch

Contact mode normally opened

If the switch object receives a telegram with the value " 0 ", the contact is opened. If a telegram value of " 1 " is received, the contact is closed.

The settings "Pressed" and "Released" are used for the different switching states of the output contacts.

In relay mode "Normally opened":

- Pressed = contact closed
- Released = contact opened

Switching ("Normally opened" mode)

Status response

Depending on the parameterization, each channel can return a status response. The following parameter settings are available for this:

Normal behavior (Pressed $=1$; Released $=0$)
Inverted (Pressed $=0 ;$ Released $=1$)

Contact mode normally closed

If the switch object receives a telegram with the value " 0 ", the contact is closed. If a telegram value of " 1 " is received, the contact is opened.

The settings "Pressed" and "Released" are used for the different switching states of the output contacts.

In relay mode "Normally closed":

- Pressed = contact opened
- Released = contact closed

Switching ("Normally closed" mode)

Status response

Depending on the parameterization, each channel can return a status response. The following parameter settings are available for this:

Normal behavior (Pressed $=1$; Released $=0$)
Inverted $($ Pressed $=0 ;$ Released $=1)$

Blinking

The switching mode Blinking alternately opens and closes the relay. You can define the blinking behavior for each channel. The blinking speed is defined using the parameter Blinking interval. The blinking cycle starts with a closed relay. Furthermore, you can set the ratio between closed and open relay during a blinking time in 3 steps. You can reduce the blinking intervals to a defined number to protect the relay. Additionally, you can specify the state to which the relay will be switched after the defined number of blinking intervals.

Important

Short switching times must not be parameterized under load (see technical data of the switching output).

Master/Ext. 1/2 Output 1-8-Switch -Switching	Express settings for switching	
	Switching mode	Blinking
5	Behavior at pressed/released	Blinking / relay opened Blinking / relay closed Relay opened / blinking Relay closed / blinking
	Blinking interval	$\begin{aligned} & 5 s \\ & (5 s-60 s) \end{aligned}$
	Proportion open/closed	Equal (50/50\%) Short open / long closed (20/80\%) Long open / short closed (80/20\%)
	Defined number of blinking intervals (0...255, $0=$ permanent blinking)	20
	Behavior after defined number of blinking intervals	Relay is closed Relay is opened

Behavior at pressed/released

- Blinking / relay opened

With pressed (telegram value " 1 "), the relay starts blinking. With released (telegram value " 0 " during blinking), the relay stops blinking and the relay is opened.

Blinking / relay opened

- Blinking / relay closed

With pressed (telegram value " 1 "), the relay starts blinking. With released (telegram value " 0 " during blinking), the relay stops blinking and the relay is closed.

Blinking / relay closed

- Relay opened / blinking

With pressed (telegram value " 1 "), the relay stops blinking and the relay is opened. With released (telegram value "0" during blinking), the relay starts blinking.

The blinking cycle starts with a closed relay immediately after the download. Following the download, the switch object is released.

Relay closed / blinking

- Relay closed / blinking

With pressed (telegram value " 1 "), the relay stops blinking and the relay is closed. With released (telegram value "0" during blinking), the relay starts blinking.

The blinking cycle starts with a closed relay immediately after the download. Following the download, the switch object is released.

Relay closed / blinking

Blinking interval

The blinking speed is set here. A blinking interval (on / off) can be set between 5 and 60 seconds.

Proportion open/closed

You can parameterize the ratio between closed and open relay during a blinking time. You can select whether the relay is to be open/closed equally (Equal) during a blinking interval (50\% / 50\%) or short open / long closed (20\% / 80\%) or long open / short closed (80\% / 20\%).

Proportion open/closed

Defined number of blinking intervals

You can reduce the blinking intervals to a defined number (0...255) to protect the relay. With " 0 ", the number of blinking intervals is unlimited, so the relay blinks permanently.

Behavior after defined number of blinking intervals

You can specify the state to which the relay will be switched after the defined number of blinking intervals. Either Relay is closed or Relay is opened.

Status response

Depending on the parameterization, each channel can return a status response. The following parameter settings are available for this:

Normal behavior (Pressed $=1$; Released $=0$)
Inverted $($ Pressed $=0 ;$ Released $=1)$

Note:

At the beginning of the blinking interval, a one-off " 1 " signal is sent as feedback to the bus. After the end of the blinking interval, a one-off " 0 " telegram is sent to the bus. Or inverted.

No.	Name	Object function	Length	Behavior	Data Type
31	 (name of the channel)	Switching	1 bit	Received	1.001 switch
37	 (name of the channel)	Status feedback	1 bit	Sending	1.001 switch

7.3 Contact mode

Normally opened

The settings for Output 1 are described below, but apply equally to all outputs.

Master/Ext. $1 / 2$ Output 1-8 -Switch -Switching	Express settings for switching	
	Contact mode	Normally opened Normally closed

If the switch object receives a telegram with the value " 0 ", the contact is opened. If a telegram value of " 1 " is received, the contact is closed.

The settings "Pressed" and "Released" are used for the different switching states of the output contacts.

In relay mode "Normally opened":

- Pressed = contact closed
- Released = contact opened

Switching ("Normally opened" mode)

Status response

Depending on the parameterization, each channel can return a status response. The following parameter settings are available for this:

Normal behavior (Pressed $=1$; Released $=0$)
Inverted (Pressed $=0 ;$ Released $=1$)

Normally closed

If the switch object receives a telegram with the value " 0 ", the contact is closed. If a telegram value of " 1 " is received, the contact is opened.

The settings "Pressed" and "Released" are used for the different switching states of the output contacts.

In relay mode "Normally closed":

- Pressed = contact opened
- Released = contact closed

Switching ("Normally closed" mode)

Status response

Depending on the parameterization, each channel can return a status response.
The following parameter settings are available for this:
Normal behavior (Pressed $=1$; Released $=0$)
Inverted (Pressed = 0; Released = 1)

7.4 Scenes

If you want to change multiple room functions simultaneously at the press of a button or with a command, you can do so using the scene function. You can use a scene, for example, to switch on the room lighting, set the heating control to daytime operation and turn on the power supply for the sockets of a room.

Enable scenes

Master/Ext. $1 / 2$ Output 1-8 -Switch -Switching	Express settings for switching
	Scenes
	Disabled
	Enabled
-Scenes settings	Scene settings

Following enabling of the scenes, the group object appears.

Group objects

No.	Name	Object function	Length	Behavior	Data Type
36	 (name of the channel)	Scene	1 byte	Received	18.001 scene control

Number of scenes

Master/Ext. 1/2 Output 1-8 -Switch - Switching	Scene settings
-Scenes settings	Required number of scenes 1 (1-16)

You can use the scene function to include multiple channels in a scene control. Up to 16 different scenes are available for each output channel.

Each of the up to 16 scenes can be disabled again.

Master/Ext. 1/2 Output 1-8 -Switch -Switching	Scene settings	Enabled
Scenes settings	Scene 1 (1-16)	Disabled
	Scene 1 Description Scene 1 Address (0-63) Dependent: $\mathbf{G l o b a l}$ settings for scenes --> 24	Scene address 0-63
	Scene 1 Address (1-64) Dependent: Global settings for scenes --> 24	Scene address 1-64
Scene 1 switching state	Released	
		Pressed

For clarity, a short description can be stored for each scene.

Each of these scenes can be assigned one of 64 possible scene addresses 0 to 63 (corresponding to telegram values $0-63$) or 1 to 64 (corresponding to telegram values $0-63$). This depends on the global settings for scenes. Global settings for scenes --> 24

You can store the switching states (pressed, released) as scene values for each output channel.

Time delay for scene processing

To avoid high power-on currents when switching to a complex scene, you can parameterize a time delay for each output channel.

```
Master/Ext. 1/2
Output 1-8-Switch Scene settings
-Switching
-Scenes settings Time delay for scene process-
ing (0...255, unit = 100 ms)
```


Calling and saving scene values

The scene values for the output relays are called using the "Scene object" object. After receiving a scene telegram, the device evaluates the sent scene address and switches the outputs to the saved scene values.

If the "scene object" receives a scene telegram with learning bit " 1 ", then for all scenes assigned to the received scene address, the current switching state is saved as the new scene value.

Note: If a scene address within a channel is assigned to multiple scenes (incorrect parameterization), only the last scene found with this scene address is called or saved. You can avoid this by assigning different scene addresses within a channel.

Telegram format

Telegrams for the scene function have the data format: $L \times D$ D D D D.
$\mathrm{L}=$ learning bit
$X=$ not used
DDDDDD = called scene address
If the learning bit in a telegram has the value " 0 ", then the relay states saved for the scene address are called and set.

If the learning bit receives the value " 1 ", then the current output states are saved as new scene values for the received scene address.

Examples:

Telegram value	Binary	Hexadecimal	Scene address
0	00000000	0	Call scene address 0
1	00000001	1	Call scene address 1
29	00011101	$1 D$	Call scene address 29
57	00111001	39	Call scene address 57
63	00111111	$3 F$	Call scene address 63
128	10000001	80	Learning scene address 0
129	10000001	81	Learning scene address 1 (129-128)
157	10011101	$9 D$	Learning scene address 29 (157-128)
185	10111001	B9	Learning scene address 57 (185-128)
191	10111111	BF	Learning scene address 63 (191-128)

Overwrite scene values during download

Master/Ext. $1 / 2$ Output 1-8 -Switch -Switching	Scene settings	
-Scenes settings Overwrite scene values of actuator during download	Disabled	
		Enabled

If you have enabled the parameter "Overwrite scene values in actuator during download", the scene values saved in the device will be overwritten with your preset values on downloading. If you do not want to overwrite the values in the device when downloading, you must disable the parameter. In this case, the parameterized scene values are only written to the device memory during the first download. If an application download is then carried out, the scene values in the device memory are retained.

Priority

The scene function has the same priority as the normal switching function via the "switch object". This should be taken into account with regard to the priority of the higher-level functions.

7.5 Central function switching

Enabling a central function for switching output

The central function is enabled or disabled here for each switch output.

Master/Ext. $1 / 2$ Output $1-8-$ Switch - Switching	Express settings for switching
	Central function
	Enabled

The global settings and explanations of the central function can be found in the chapter General settings. (Enabling central functions --> 19)

7.6 Status response

Depending on the parameterization, each channel can return a status response. The following parameter settings are available for this:

Normal behavior (Pressed $=1$; Released $=0$)
Inverted (Pressed $=0 ;$ Released $=1$)

7.7 Activating extended settings for switching

Master/Ext. 1/2 Output 1-8 -Switch -Switching	Express settings for switching	
	Extended settings for switch- ing	No
		Yes

To activate the advanced settings for switching, you must enable them here.

8 Extended settings for switching

On the Express settings for switching tab, activate the Extended settings for switching.

Master/Ext. $1 / 2$ Output 1-8-Switch -Switching	Express settings for switching
Extended settings for switching	No
-Time settings	Staircase lighting time
-Logic, Locking \& Priori- ty settings	Priority function
Off-delay time	
-Safety and alarm settings	Safety function function
Alarm function	
Failure and download behavior	

8.1 Time settings

Staircase lighting time function (staircase timer)

This function is used to switch on an appliance, e.g. the light in a staircase, via a bus telegram and automatically switch it off again after a set duration. Therefore, no manually or automatically generated bus telegram is required for switching off. The actuator carries out the switching off operation independently and under time control.

Two types of staircase lighting time function are available:

Master/Ext. $1 / 2$ Output 1-8 -Switch -Switching	Staircase lighting time
-Time settings	Staircase lighting time
	Disabled
	Fix
	Variable

Following enabling of the corresponding staircase lighting time function, the relevant group object appears.

No.	Name	Object function	Length	Behavior	Data Type
35	 (name of the channel)	Staircase fix	1 bit	Received	1.010 Start/Stop
35	 (name of the channel)	Staircase vari- able	2 bytes	Received	7.005 Time (s)

Staircase lighting time fix

With Staircase lighting time fix, you can parameterize a fixed staircase lighting time for each channel. The staircase lighting time can be parameterized between 5 seconds and 1 hour. This function makes the Staircase fix object (1 bit) available to you.

Master/Ext. 1/2 Output 1-8 -Switch -Switching	Staircase lighting time fix	
-Time settings	Manual switching off	Active
		Not active
	Time extension	Not retriggerable
		Retriggerable
	5	Retriggerable and adding
	Max. number of additions	$2(2-5)$
	Duration time	$2 \mathrm{~min}(5 \mathrm{~s}-1 \mathrm{~h})$
	Number of prewarnings	$0(0-5)$
C	Warning starts (5...255, unit $=1$ s) before end	20 (5-255)
	Hint: Staircase duration time mu start time.	st be longer or equal than prewarning

Staircase lighting time variable

With Staircase lighting time variable, a time between 0 s and 65535 s is defined via the object Staircase variable (2 bytes DPT 7.005 time (s)), e.g. using a button. This enables you to specify the length of the staircase lighting time from different places depending on the desired situation.

Master/Ext. 1/2 Output 1-8 -Switch -Switching	Staircase lighting time variable	
-Time settings	Manual switching off	Active
		Not active
	Time extension	Not retriggerable
		Retriggerable
		Retriggerable to the higher value
	5	Retriggerable and adding
	Max. number of additions	2 (2-5)
	Number of prewarnings	0 (0-5)
G	Warning starts ($5 \ldots 255$, unit $=1$ s) before end	20 (5-255)
	Hint: Staircase duration time mu start time.	st be longer or equal than prewarning

Manual switching off

Both staircase lighting time functions enable you to switch off the staircase lighting time prematurely. After receiving the object value 0 , the output is switched to the released position.

Manual switching off = Active ("0" telegram)

Manual switching off = Not active ("0" telegram)

A telegram with the object value 0 has no effect. The set staircase light time continues to run normally until the end.

Time extension

If you want to restart the staircase lighting time before it has elapsed or add up the staircase lighting time, you must select the staircase lighting time Retriggerable or Retriggerable and adding or Retriggerable to the higher value. The staircase lighting time is then restarted or added using another " 1 " telegram.

Time extension $=$ Retriggerable

Once a new telegram with the object value " 1 " has been received, the staircase lighting time is restarted.

Time extension $=$ Retriggerable and adding

Once one or more new telegrams with the object value "1" have been received, the staircase lighting time is added to the previous staircase lighting time. The number of additions can be set. You can parameterize a maximum of 5 additions of the staircase lighting time. For example, you can add up the staircase lighting time by pressing a separate button several times.

Time extension = Retriggerable to the higher value
(only for staircase lighting time = variable)

Once a new telegram has been received, the staircase lighting time is restarted with the higher value.

Time extension $=$ Not retriggerable

However, if the staircase lighting time is not retriggerable, the relay will switch off at exactly the moment the time elapses. If the Manual switching off function is activated, the staircase timer can be ended with a "0" telegram.

Prewarnings

To ensure that you are warned before the end of the staircase lighting time, you can parameterize a defined number (0-5) of prewarnings.

With the prewarnings, the user can be informed about the imminent end of the function by briefly switching off the lighting system shortly before the end of a staircase lighting time. He can then restart the staircase lighting by pressing a button (retriggering). If he does nothing, the function continues normally.
You can set this using the parameter Number of prewarnings. With the value " 0 ", the warning function is disabled. To enable the prewarnings, select the number of warning pulses. The first warning starts at the remaining staircase lighting time $\left(\mathrm{t}_{\text {Warning }}\right)$ set via the parameter Warning starts before end.
With every prewarning, the output contact is switched to "released" state for the fixed duration of $500 \mathrm{~ms}\left(\mathrm{t}_{\mathrm{u}}\right)$. If you have activated more than one warning, the waiting time $\left(\mathrm{t}_{\mathrm{zv}}\right)$ between the warning pulses is calculated using the following formula:

Wait time between
Remaining staircase lighting time $\left(t_{\text {warning }}\right)$ -
prewarnings $\left(\mathrm{t}_{\mathrm{zv}}\right)$
$=$ (number of prewarnings $\times 500 \mathrm{~ms}\left(\mathrm{t}_{\mathrm{u}}\right)$)
Number of prewarnings

If a continuous staircase lighting time function is interrupted by premature termination, no prewarning is given

Prewarning (number of prewarnings=3)

Staircase lighting time function in combination with on-delay and off-delay

Combining a staircase lighting time function with an on-delay results in a delayed start of the staircase lighting function.

The result of combining a staircase lighting time function with an off-delay depends on how you have defined the staircase lighting time function:

In the case of the staircase lighting time function with manual switching off (" 0 " telegram), the off-delay is started if a premature switch-off telegram is received on the "staircase lighting time object". Once the off-delay time has elapsed, the output is switched off (released).

In the case of the staircase lighting time function without manual switching off, receipt of a switch-off telegram on the "staircase lighting time object" has no effect. The staircase lighting time function continues to the end and then switches the output relay directly to the "released" state. An off-delay cannot be set.

Staircase lighting time function with off-delay

For staircase lighting time functions with manual switching off and warnings activated, the staircase lighting time function is immediately deactivated with a warning when an "Off" telegram is received. The off-delay elapses. No warning is generated.

Priority

If the output of the actuator is switched to a new switch position by a higher priority function during an ongoing staircase lighting time, the relay switches to the new position immediately. The most recent switching telegram is saved and delay times and staircase lighting times continue.

On-delay and off delay

Due to the delay functions, the change of relay states is not carried out immediately after receipt of a telegram, but only after the set delay time has elapsed:

After the object value " 1 " has been received, the on-delay delays the switching of the relay contact from the released state to the pressed state.

After the object value " 0 " has been received, the off-delay delays the switching of the relay contact from the pressed state to the released state.

You can also use both functions together with a single channel.
On-delay and off-delay (normally opened/normally closed)

On-delay

Master/Ext. 1/2 Output 1-8 -Switch -Switching -Time settings	On-delay time	Enabled
	On-delay time	Disabled
	Works on Switch object	Yes (Yes/No)
	Works on Scene object	No (Yes/No)
On-delay mode	Not retriggerable	

Off-delay

Master/Ext. 1/2 Output 1-8-Switch -Switching	Off-delay time	
-Time settings	Off-delay time	Enabled
		Disabled
	Works on Switch object	Yes (Yes/No)
	Works on Staircase object	No (Yes/No)
	Works on Scene object	No (Yes/No)
	Off-delay mode	Not retriggerable
		Retriggerable
		Retriggerable and adding
	Max. number of additions	2 (2-5)
	Off-delay time	1 s (0 ms-1 h)

Works on object

For each channel, you can parameterize whether the delay affects the switch object, staircase lighting time object or scene object, or multiple objects in combination.

Type of delay

Delay times can be parameterized for each channel. You can use parameters to define the set delays as Retriggerable or Not retriggerable. In the case of a retriggerable on-delay, the delay time is restarted when a " 1 " telegram is received. In the case of retriggerable off-delays, the delay time is restarted when a " 0 " telegram is received.

Retriggerable on-delay ("1"telegram)

Retriggerable off-delay ("0" telegram)

Moreover, for the off-delay, you can also select Retriggerable and adding. The delay time is added when the same telegram value is received, e.g. using a separate button. You can define the maximum number of additions.

Retriggerable off-delay and adding ("0" telegram)

In the case of not retriggerable delays, by contrast, the relay will switch off at exactly the moment the time elapses.

Not retriggerable on-delay

Not retriggerable off-delay

Interrupting a delay function

If a delay function is started by receiving a new object value and the output channel receives a telegram with the opposite object value during the current delay time, the delay function is canceled. The relay is not switched:

Receipt of the object value " 0 " interrupts an active on-delay.
Receipt of the object value " 1 " interrupts an active off-delay.

Priority

If the output of the actuator is switched to a new switch position by a higher-level function during an active delay time, the relay switches immediately.

8.2 Logic, Locking \& Priority settings

Logic function

With this functionality, the Switching object and the Logical input object can be logically linked to one another.
The logic function can be activated (enabled) in the ETS.

Master/Ext. 1/2 Output 1-8-Switch -Switching	Logic function	
-Logic, Locking \& Priority settings	Logic function	Disabled
C		Enabled
	Type of logic operation	OR
		AND
		XOR
	Value of logic operation object after bus voltage recovery or download	0
		1
	Value of logic object	Normal
		Inverted

Following enabling, these group objects appear.

No.	Name	Object function	Length	Behavior	Data Type
31	 (name of the channel)	Switching	1 bit	Received	1.001 switch
32	 (name of the channel)	Logical input	1 bit	Received	1.002 Boolean

An AND, OR or XOR logic operation can be set. A parameter is used to define the preset value of the logic object after bus voltage recovery and download.

For example, in the case of an OR logic object preset with the value " 1 " after bus voltage recovery, the output remains activated until a " 0 " telegram is received on the "logic object". A parameterized behavior after bus voltage recovery is only adopted after the logic operation has been terminated.

AND logic operation

As long as the "logic operation input object" has the value " 1 ", switching can be carried out as usual using the address of the "switch object". Set staircase lighting times will continue to be observed. Switching off via the "logic object" takes effect immediately.

Object Logical input	Object Switching	Result
0	0	0
0	1	0
1	0	0
1	1	1

Example:

An AND logic operation can be used to create a power-on lock. This means that as long as the value of the "logic object" is " 0 ", the "switch object" cannot be used for switching on. If the value of the "switch object" is " 1 ", switching on is carried out automatically if the value of the logic object changes from 0 to 1 .

AND logic operation;
Value of logic object after bus voltage recovery: 1

The logic object is preset with the value " 1 " after a RESET (bus voltage recovery and download). This enables switching to be carried out as usual using the switch object. The power-on lock is not active until a " 0 " telegram has been received via the logic object.

AND logic operation;
Value of logic object after bus voltage recovery: 0

The parameter setting causes the "logic object" to be set to the value " 0 ". After a RESET, the actuator does not switch the output until a " 1 " telegram has been received on the "logic object".

OR logic operation

As long as the "logic object" has the value " 0 ", switching can be carried out as usual using the address of the "switch object". Set staircase times continue to be observed. Switching on via the "logic object" takes effect immediately.

Object Logical input	Object Switching	Result
0	0	0
0	1	1
1	0	1
1	1	1

Example:

An OR logic operation can be used to implement a power-off lock or Central ON function (e.g. light for cleaning buildings). If the value of the "switch object" is also set to " 1 " locally, the relay remains switched on when the power-off lock is withdrawn (value change of logic object from 1 to 0).

OR logic operation;
Value of logic object after bus voltage recovery: 0

The relay can only be switched via the "switch object" if a " 0 " telegram has been received via the "logic object".

OR logic operation;
Value of logic object after bus voltage recovery: 1

The logic object is preset to the value " 1 " after a RESET. The actuator will switch on the output immediately. The OR logic function is only reset by a " 0 " telegram on the logic object.

XOR logic operation

As soon as the values of the "logic object" and the "switch object" differ from one another, the output is switched to Pressed. If the values are the same, the output is Released.

Object Logical input	Object Switching	Result
0	0	0
0	1	1
1	0	1
1	1	0

Functions with higher priority

The order of priority of the various functions is set on the Extended settings tab of the device. Priority of functions for switching --> 28
In the ETS, the higher priority function can be activated.

Master/Ext. $1 / 2$ Output 1-8 -Switch -Switching	Priority function	
-Logic, Locking \& Priori- ty settings	Higher priority function	Disabled
		Priority function

Priority function (priority control)

If you have chosen the priority function (known in other devices as priority control), a new group object called Priority is available for this channel.

Group objects of priority function

No.	Name	Object function	Length	Behavior	Data Type
33	 (name of the channel)	Priority	2 bit	Received	2.001 Prio. switching

Master/Ext. 1/2 Output 1-8 -Switch -Switching	Priority function	
-Logic, Locking \& Priority settings	Higher priority function	Priority function
5	Behavior at end of priority	Follows current value
		Pressed
		Released
	Behavior after bus voltage recovery	Disabled
		Enabled, released
		Enabled, pressed
		As before bus voltage failure

The object values of the priority object have the following meaning:

Value bit 1	Value bit 2	Behavior of output
1	1	Activate priority, switching state "Pressed"
0	1	Deactivate priority, switching state dependent on the parameter Be- havior at end of priority
1	0	Activate priority, switching state "Released"
0	0	End of priority, switching state dependent on parameter Behavior at end of priority

The priority is activated if the value " 1 " is received on bit 1 . The assigned output relay is then switched, depending on bit 2 , to "Pressed" (bit $2=1$ ") or "Released" (bit 2 = "0").

An active priority is deactivated by a new telegram with the value " 0 " on bit 1 . As long as a priority function is active, the channel concerned cannot be controlled by the "switch object" and the advanced functions (central function, time functions, scene function).

After the end of a priority, the behavior of the output relay is determined by the parameter Behavior at end of priority.

The setting Follows currently valid state has the following effect:
During the active priority, all switching commands of subordinate functions are tracked by the application and the switching state is tracked internally. In this way, at the end of the priority, the switching state can be set that would currently have been set without the priority.

Behavior after bus voltage recovery

Using the parameter Behavior after bus voltage recovery, you can define the reaction of the channel to bus voltage recovery and the switching state:

- Disabled

Priority remains deactivated. The switching state of the channel results from the other higher-level functions or from the set switching behavior after bus voltage recovery.

- Enabled, released

The priority is automatically activated on bus voltage recovery and the switching state is switched to Released.

- Enabled, pressed

The priority is automatically activated on bus voltage recovery and the switching state is switched to Pressed.

- As before bus voltage failure

The priority is brought to the state it had before the bus voltage failure. If the priority was previously active, the output relay is switched to the state it had previously.

Locking function

You can use the locking function to set a specific channel to pressed/released and lock it in this position. The state of the output channel cannot be changed by other control commands as long as the lock is active. You can enable the locking function individually for each switching channel.

Master/Ext. 1/2 Output 1-8-Switch -Switching -Logic, Locking \& Priority settings	Locking function	
	Higher priority function	Locking function
	Locking	at object value "1"
		At object value "0"
	Behavior at start of locking	No reaction
		Pressed
		Released
	Behavior at end of locking	No reaction
		Pressed
		Released
		Follows current value
	Behavior after download	Disabled
		Enabled
		As before download
	Behavior after bus voltage recovery	Disabled
		Enabled
		As before bus voltage failure

Once the locking function has been enabled, a new group object called Lock is available for the switching channel. You can activate and deactivate a channel lock using the locking object.

No.	Name	Object function	Length	Behavior	Data Type
33	 (name of the channel)	Locking	1 bit	Received	1.003 Enable

If the locking object receives a telegram with the object value that you set for the parameter Lock, all other channel functions are disabled. You can define the reaction using the parameter Behavior at start of locking.

If the locking object receives a telegram with the object value opposite of that for activation, the lock is canceled and the output relay adopts the state that you defined in the parameter Behavior at end of locking.

The locking function always switches without a delay. During a lock, the most recent switching telegram is saved and delay times and staircase lighting times continue.

Lock at object value "1"; Behavior at start of locking = no reaction;
Behavior at end of locking = Follows current value; relay operation: Normally opened

Lock behavior after download

After a download, the lock function is also set as in the case of bus voltage recovery. The parameter Behavior after download determines which state is set.
If the parameter Behavior after download is set to the value As before download, the locking function is activated as before and the relay is switched accordingly.

Lock behavior after bus voltage recovery

- Disabled

The locking function is not activated after a bus voltage recovery, regardless of the state it had before the bus voltage failure.

- Enabled

After a bus voltage recovery, the locking function becomes active and the output is switched to the state that you defined via the parameter Behavior at start of locking. If you have set the value No reaction here, the output is locked in its current state.

- As before bus voltage failure The locking function is brought to the state that was active before the bus voltage failure. If the locking function was active, the output is controlled by its settings in the parameter Behavior at start of locking.

8.3 Safety and alarm settings

Safety function switching

The global safety function is activated on the Extended settings tab with the parameter Device safety and the global settings are parameterized there. Device safety --> 22

The effect of the safety function can be parameterized here for each channel. You can enable the safety function individually for each switching channel.

Master/Ext. 1/2 Output 1-8 -Switch -Switching	Safety function	
-Safety and alarm settings	Safety function	Disabled
C		Enabled
	Behavior at start of safety	No reaction
		Pressed
		Released
		Blinking (5s cycle)
	Behavior at end of safety	No reaction
		Pressed
		Released
		Follows current value
	Device safety --> 22 (Cycle time surveillance for Safety object" > 0	
	Behavior at exceeding cycle time	No reaction
		Pressed
		Released
		Blinking (5s cycle)

Following global enabling of the device safety, the group object appears.

Group objects

No.	Name	Object function	Length	Behavior	Data Type
23	Central	Safety	1 bit	Received	1.005 alarm

The safety function is activated if the safety object receives a telegram with the object value that you defined with the parameter Device safety (Device safety --> 22). The reaction is defined by the parameter Behavior at start of safety.

If the safety object receives a telegram with the object value opposite of that for activation, the safety function is canceled and the output relay adopts the state that you defined in the parameter Behavior at end of safety.

The device then waits for a telegram from an external sender within the globally set cycle time. If such a telegram is not received within the monitoring time, the parameter Behavior at exceeding cycle time is used to determine what is to happen.

Priority

The safety function is a 1-bit group object with the highest priority. This means that this object takes precedence over the following group objects:

- Alarm object / Lock object / Priority object Priority of functions for switching --> 28
- Logical input object
- Scene object
- Central switch object
- Staircase fix / Staircase variable object
- Switch object

Alarm function

In the case of an alarm, the alarm function can be used to set each output to a desired alarm state. The output is disabled for further operation. Only a higher-level function with a higher priority can still be used to switch the output to a different state. You can activate the alarm function individually for each output channel. The alarm function can be parameterized here for each channel.

Master/Ext. 1/2 Output 1-8 -Switch -Switching -Safety and alarm settings	Alarm function	
	Alarm function	Disabled
6		Enabled
	Alarm	At object value "1"
		At object value "0"
	Behavior at start of alarm	No reaction
		Pressed
		Released
		Blinking (5s cycle)
	Behavior at end of alarm	No reaction
		Pressed
		Released
		Follows current value
	Behavior after bus voltage recovery	Disabled
		Enabled
		As before bus voltage failure

Following enabling, the group object for this channel appears.

Group objects

No.	Name	Object function	Length	Behavior	Data Type
34	 (name of the channel)	Alarm	1 bit	Received	1.005 alarm

Object values for alarm

The alarm function is activated if the alarm object receives a telegram with the object value that you defined with the parameter Alarm. The reaction is defined by the parameter Behavior at start of alarm.

If the alarm object receives a telegram with the object value opposite of that for activation, the alarm function is canceled and the output relay adopts the state that you defined in the parameter Behavior at end of alarm.

- At object value " 1 ":

The object value " 1 " switches on the alarm function. If the object value " 0 " is received, the alarm function is switched off again.

- At object value " 0 ":

The object value "0" switches on the alarm function. A telegram with the object value " 1 " deactivates the function again.

Behavior of the alarm after bus voltage recovery

- Disabled

The alarm function is not activated after a bus voltage recovery, regardless of the state it had before the bus voltage failure.

- Enabled

After a bus voltage recovery, the alarm function becomes active and the output is switched to the state that you defined via the parameter Behavior at start of alarm.

- As before bus voltage failure

The alarm function is brought to the state that was active before the bus voltage failure. If the alarm function was active, the output is controlled by its settings in the parameter Behavior at start of alarm.

Priority

The alarm function is a 1-bit group object with high priority. The device safety function has the highest priority. The priority order for switching can be defined globally (Priority of functions for switching --> 28). The alarm object takes precedence over the following group objects:

- The priority relative to the locking object / priority object is defined centrally for switching: Priority of functions for switching --> 28
- Logical input object
- Scene object
- Central switch object
- Staircase fix / Staircase variable object
- Switch object

Failure and download behavior

You can enable this function individually for each switching channel. The behavior of the switch output in the case of a bus voltage failure / bus voltage recovery and application download is defined.

Master/Ext. $1 / 2$ Output $1-8-$-Switch -Switching -Safety and alarm settings	Failure and download behavior havior	
	Relay state after bus voltage failure	No reaction be-

Relay behavior after bus voltage failure

If the bus voltage falls below 18 V , the relay can be switched to a parameterized state. The relay state can be defined as either pressed or released or remain in the state it had before the failure (No reaction). At the same time, the current switching position of the relay is saved in the device.

Possible settings:

- No reaction

The relay contact remains unchanged in its current position. If time functions (staircase lighting time function, on-delay, off-delay) are currently active, they are canceled.

- Pressed

In the case of a normally opened contact, the relay is closed; in the case of a normally closed contact, the relay is opened. Running time functions are deactivated.

- Released

In the case of a normally opened contact, the relay is opened; in the case of a normally closed contact, the relay is closed. Running time functions are deactivated.

Relay behavior after bus voltage recovery

In the case of bus voltage recovery, the relay can adopt a parameterized state.

Possible settings:

- Pressed

In the case of a normally opened contact, the relay is closed; in the case of a normally closed contact, the relay is opened.

- Released In the case of a normally opened contact, the relay is opened; in the case of a normally closed contact, the relay is closed.
- As before bus voltage failure

With the parameter "As before bus voltage failure", the relay adopts the state that was saved in the device at the time of the bus voltage failure. Any subsequent manual switchings are overwritten.

Priority:

The reaction to the behavior set here for bus voltage recovery has a low priority. If a function with a higher priority is activated for the switching channel directly after bus voltage recovery, the settings described below apply to these functions.

Relay states caused by higher-priority functions (higher-level function) take precedence over behavior after bus voltage recovery.

Example: OR logic operation with parameterized value of the logic object after bus voltage recovery $=1$, prevails and switches the output.

Behavior after download

After the ETS download, the relay can adopt a parameterized state.
If an internal defect or a faulty download results in a state in which the application is not operational, the device will not react. The output relays remain in their last position.
If you wish to activate the behavior after ETS download for an output channel, you must select a "relay state at end of download" for each channel.

Possible settings:

- As before download

The relays execute the behavior set before the download. Any subsequent manual switching is overwritten. If a higher-level function (logic operation, priority control or lock) is active, the behavior you defined for these functions will be executed.

- Pressed

In the case of a normally opened contact, the relay is closed; in the case of a normally closed contact, the relay is opened.

- Released

In the case of a normally opened contact, the relay is opened; in the case of a normally closed contact, the relay is closed.

Priority

Relay states caused by higher-priority functions take precedence over behavior after ETS download.
Example: OR logic operation with parameterized value of the logic object after bus voltage recovery $=1$, prevails and switches the output.

9 Express settings for blind / roller shutter

On the Express settings for blind / roller shutter tab, you can set basic settings and enable or disable other functions.

To control blinds/roller shutters, you can set the channel function of the device to the operating mode Blind or roller shutter. Now, two outputs will always be merged into a single blind / roller shutter channel. Please install the drives according to the installation instructions.

The operating mode is selected for each output on the Defining channel functions --> 20 tab:

```
General Channel function for Master /
Extension 1 / Extension 2
G
Master / Ext. 1/2
Output 1+2 / 3+4 / 5+6
/ 7+8
-Blind
Output 1+2 / 3+4/5+6 / 7+8 Blind
```

```
General
settings
G
Master / Ext. 1/2
Output 1+2 / 3+4 / 5+6
/ 7+8
-Roller shutter
```

Please install the drives according to the installation instructions. When connecting the motor, note the correct direction of rotation for movement up/down.

There are many different blind variants for indoor and outdoor use. The channel enables the control of a blind / roller shutter motor with max. 1000 VA. Only one motor may be connected per channel. The motor must have an end position switch.

NOTE

Check before commissioning: The load connections and the order of the devices (Master -> Extension 1 -> Extension 2) must correspond to your ETS programming.

- Connect blind motors to the blind channels specified in the ETS.
- Connect loads to the switching channels specified in the ETS.
- If the extension is planned as extension 1 (E1), connect it directly to the master.
- If the extension is planned as extension 2 (E2), then connect it to extension 1.

An extension cannot be put into operation if the order of the devices does not correspond to your programming in the ETS.

9.1 Blind / roller shutter control

The Express settings can be used to move the connected drive manually to the desired position. Four group objects are available for this purpose: "Movement in manual mode" and "Stop/step in manual mode" (for roller shutters: "Stop in manual mode"). For positioning: "Height position in manual mode" and for blind only "Slat position in manual mode".

- Move drive

The object "Movement in manual mode" is responsible for moving the blind or roller shutter up and down. The drive moves down if the value "1" is received and up if the value is " 0 ".

- Running time: Drive running time --> 115

The activated output remains active until the set running time has expired.

- Pause on reverse for change of direction: Pause time before reverting (pause on reverse) --> 117
If a control command in the opposite direction of motion is received while the drive is moving, the drive stops and waits for the defined pause on reverse time before starting to move in the new direction of motion.
- Stop drive A drive that is in motion is stopped on receiving a bus telegram for the object Stop/step in manual mode (for roller shutters: "Stop in manual mode"). The value received for the object is irrelevant here.
- Slat tracking (for blind only): Slat position after movement --> 123 Once the drive has been stopped, the slats will be rotated to the desired position according to the settings for the parameter "Slat position after movement".
- Rotate blind slats (for blind only)

In the case of blinds, the opening angle of the slats can be adjusted gradually using the object "Stop/step in manual mode". For this, the drive must be at rest. If the group object receives the object value " 1 ", the slats are closed by one step; if the value " 0 " is received, they are opened.
If a step command is executed and the slats reach one of their movement range limits or are already in a limit position, the drive will briefly move in the desired direction. The duration of this motion also corresponds to the set step time. If the direction is changed from one step command to the next, the device will once again observe the pause on reverse as the wait time between the steps.

Manually moving to the height position and slat opening angle (blind) using absolute position commands

With this function, you can set a height position for blinds / roller shutters and the slat opening angle for blinds directly and manually using a percentage value. The desired percentage value always refers to the possible movement range 0-100\% that you have set by defining the running times. You thus set an absolute height position for the entire movement range.

After receiving a new positional value, the device calculates a proportional travel time from the current position and the new desired position and moves the drive in the corresponding direction of motion for the duration of this travel time. The new position is buffered again. The accuracy of the position settings depends on the accuracy of your drive running time settings.

After a number of positioning movements, there are slight deviations between the actual position and the calculated position for physical and mechanical reasons. You can reset these deviations by means of reference movements "Calibration --> 143".

If a reference movement is required before a new positioning movement, the device initiates it before the movement to the new command position (see section "Calibration --> 143").

The group objects "Height position in manual mode" and "Slat position in manual mode" (for blind only) are available for setting the absolute positional values.

- Set height position

The object Height position in manual mode is responsible for the height position of the blind or roller shutter. Limit position 0\% means that the blind / roller shutter is at the top. Limit position 100% means that the blind / roller shutter is at the bottom.

- Rotate slats to opening position (for blind only)

You can use the object "Slat position in manual mode" to set the slat opening angle directly. In slat position 0\%, the slats are horizontally open, or closed at the top, while 100% means they are closed at the bottom. The actual opening angle of the slats depends on the type of blind used. Setting the blind type (for blind only) --> 119
When a new positional value is received, the channel calculates a running time needed to reach the new position from the current position. The drive is then moved to the new position for the calculated duration. The direction of motion is derived from the calculation. If the device receives a new positional value during a positioning movement and the calculation results in the same direction of motion, the drive continues moving to the new command position.

- Pause on reverse for change of direction

If a new positioning command is received during a drive motion or slat adjustment and the calculation results in the opposite direction of motion, the drive stops and waits for the defined pause on reverse time before starting the new positioning movement.

- Slat tracking (for blind only)

If the height position of the blind is changed and the blind reaches the desired position, the slat tracking function is executed and the slats are rotated to the desired position.

If, for example, you select the channel function Blind / roller shutter for output 1+2 on the master, an ETS channel with the name Master Output 1+2 - blind / roller shutter + name of the channel is generated. All the group objects for this channel are located here.

Group objects

Group objects for express setting for blind

No.	Name	Object function	Length	Behavior	Data Type
31	Master Output 1+2 name of the channel	Movement in manual mode	1 bit	Received	1.008 up/down
32	Master Output 1+2 name of the channel	Stop/step in manual mode (blind)	1 bit	Received	1.007 Step
32	Master Output 1+2 name of the channel	Stop in manual mode (roller shutter)	1 bit	Received	1.007 Step
33	Master Output 1+2 name of the channel	Height position in manual mode	1 byte	Received	5.001 Percent $(0 . .100 \%)$
34	Master Output 1+2 name of the channel	Slat position in manual mode (blind)	1 byte	Received	5.001 Percent $(0 \ldots .100 \%)$
46	Master Output 1+2 name of the channel	Feedback for height	1 byte	Sending	5.001 Percent $(0 \ldots .100 \%)$
47	Master Output 1+2 name of the channel	Feedback for slat (blind)	1 byte	Sending	5.001 Percent $(0 \ldots .100 \%)$
51	Master Output 1+2 name of the channel	Feedback for moving	1 bit	Sending	1.010 Start/Stop
52	Master Output 1+2 name of the channel	Feedback for last direction	1 bit	Sending	1.008 up/down

9.2 Name of the channel

You can assign a separate name for each channel, e.g. "Blind Kitchen". The name of the channel now appears on the parameters, channels and associated group objects.

```
Master / Ext. 1/2
```

Output 1+2/3+4/5+6
/ 7+8
-Blind / roller shutter
Express settings for blind / roller shutter

> Blind Kitchen

9.3 Drive running time

The individual running times for the blind / roller shutter can be determined very well with a stopwatch.
If the running times to be set are too short to be measured with the stopwatch, first set an approximate value. Test the behavior of the drive or of the slats by means of positioning commands (for blind only). If the desired positions are not fully reached, correct the running times upwards. If the positions are overshot, correct the running times downwards. Check your corrections with new positioning commands. Perform multiple tests, as the small deviations only become visible or detectable after several motions.
In addition to the aforementioned deviations, environmental factors (temperature, rain, etc.) also cause deviations in the motion behavior of the drives. Since the drives cannot signal their current position and the current position is always calculated, the channel cannot detect these deviations. In order to be able to continue to position the drive accurately, it is helpful to return the drives to a fixed starting position by means of regular reference movements. In this way you can achieve satisfactory positional accuracy for a long time.

Further information can be found in the section "Calibration --> 143".
The factory setting for the running time is 2 minutes, with up and down movement parameterized the same.
This duration is required for the drive to move from one end position (blind / roller shutter is fully open or fully closed) to the opposite end position. After the set running time, the relay of the corresponding channel is automatically switched off (even if the drive has not yet reached its end position with the values set here). If necessary, check whether the drive manufacturer has provided information about running times.

Same running times for up and down

Master / Ext. 1/2 Output $1+2 / 3+4 / 5+6$ $/ 7+8$ - Blind / roller shutter	Express settings for blind / roller shutter
	Blind control / roller shutter control
	Use same time for up and down Up/Down time
	Ys...99:59.9 min)

Different running times for up and down

If the parameter Use same time for up and down is deactivated, different running times can be set for up and down. The Running time: Up should be parameterized slightly longer so that the end stops are always reached, even in the case of low temperatures or a heavy blind / roller shutter.

Master / Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$ -Blind / roller shutter	Express settings for blind / roller shutter	
	Blind control / roller shutter control	
	Use same time for up and down	
	No	
	Up time (5s...99:59.9 min)	
	Down time (5s...99:59.9 min)	

The Running time: Up should be parameterized slightly longer so that the end stops are always reached, even in the case of low temperatures or a heavy blind / roller shutter.

This type of running time allowance should be taken into account due to the physical fact that drives take longer for upward movements than for downward movements due to the effect of gravity on the blind / roller shutter. Since this time deviation can be very short, you have to execute multiple movements to become aware of this behavior. It is useful to move the drive from 10% to 90% and back to 10% several times. If you notice that the drive does not completely reach the upper end position after these movements, you can increase the "Running time: Up".

Pause time before reverting (pause on reverse)

```
Master / Ext. 1/2
Output 1+2/3+4/5+6
/7+8
-Blind / roller shutter
Express settings for blind / roller shutter
Blind control / roller shutter control
    Pause time before reverting
    (2..255, unit = 100 ms)
```

If the channel for a drive that is currently in motion receives a motion command in the opposite direction, it first turns off both output relays for this channel. Before turning on the relay for the new direction of motion, it waits for the set Pause time before reverting.
The channel observes the pause on reverse even if it is to rotate the slats in different directions when executing two step commands (for blind only).

NOTE

The drive may be damaged.

- The drive may be damaged if the pause times are too short. Be sure to refer to the specifications in the data sheet of the drive manufacturer when setting the values.

9.4 Slat control (for blind only)

Slat rotation time

The Slat rotation time is the time during which the slat performs a complete movement from 0% to 100% (or vice versa). The adjustment range for the opening angle is dependent on the type of blind used. Setting the blind type (for blind only) --> 119

	Blind type: Downwards closed / upwards horizontal	Blind type: Down- wards tilted / up- wards horizontal	Blind type: Down- wards closed $/$ upwards closed	Blind type: Downwards tilted / upwards closed
Slat position 0%	Horizontal open	Horizontal open	Top closed	Top closed
Slat position 100%	Bottom closed	Bottom closed	Bottom closed	Bottom closed

Master $/$ Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$ -Blind	Express settings for blind
	Slat control
	Slat rotation time (open/ closed) $(0.1$ s...25 s) Steps that shall be executed during slat rotation $(1 \ldots 10)$

If the slat rotation time to be set is too short to be measured with the stopwatch, first set an approximate value. Test it by sending step telegrams.
Step commands can be used to rotate the blind slats. The opening angle of the slats can be changed in small steps, e.g. to prevent dazzle caused by a change in the position of the sun.

Depending on the Slat rotation time in one direction of motion, you can use the step time to provide the user with a certain number of steps for opening or closing the slats. The number of possible steps varies with the slat running time.

If the slat running time is 2.5 s , for example, you have a maximum of 15 steps available for moving through the entire slat opening range in one direction (2.5 s / $166 \mathrm{~ms}=15$ steps).

If you only wish to provide the user with 5 slat steps in this case:

2.5 s / 5 steps $=0.5$ s step time

Procedure for measuring short slat running times:

- Set an approximate time and select a large number of steps. This results in the step time. Example: Slat running time $=1 \mathrm{~s}$; Number of steps = 10; => Step time $=100 \mathrm{~ms}$.
- Move the slats to the closed position (slat position 100\%). For blind types with operating position, this is the lower end position.
- Count step commands: now send step commands until the blind moves upwards, and count the steps required.
- Example: The blind requires 5 steps to move through the slat adjustment range. With the sixth step, the blind moves upwards.
- With the set values for the step time (default step time: 100 ms), the following slat running time is calculated: $100 \mathrm{~ms} \times 5$ steps $=0.5 \mathrm{~s}$.
- You can now enter this value as the slat running time.

Procedure for measuring long slat running times:

- Move the slats to the closed position (slat position 100%). For blind types with operating position, this is the lower end position.
- Now send an "Up" motion command.
- Before opening the blind, the drive rotates the slats into the open position (0\%).
- Measure the time for this rotation.
- Stop the drive after the rotation.
- For blind type: Downwards tilted / upwards horizontal and blind type: Downwards tilted / upwards closed (with operating position), note that the closed slat position is only set in the lower end position. You must then also add the time for the rotation from the operating position to the closed position.

Note:

For blinds types 1 and 3 (without operating position), your setting for the slat running time affects the opening angle after a movement, since the selected opening angle (percentage value for the automatic slat position) is converted into a proportional rotation time for the slats. The same applies to the slat tracking function after a movement.

Setting the blind type (for blind only)

If you wish to program the slat control for a blind, you should define your blind type before starting the parameterization.

The application distinguishes between four different types of blinds, which you can recognize by the position of their slats during the movement. Two of these types have a mechanically defined operating position. They can be recognized seen from the tilted slat position during a downward movement. The operating position limits the possible opening angle of the slats, unless the blind is in its lower end position. This is done using the parameter Movement of the existing blind.

Master / Ext. 1/2 Output 1+2 / 3+4 / 5+6 / 7+8 -Blind	Express settings for blind	
	Slat control	
	Movement of the existing blind	Downwards closed / upwards horizontal
		Downwards tilted / upwards horizontal
		Downwards closed / upwards closed
		Downwards tilted / upwards closed

Blind type: Downwards closed / upwards horizontal

(Without operating position)

- Upward movement: Slats in horizontal open position (slat position 0\%)
- Downward movement: Slats closed downwards (slat position 100\%)
- Possible adjustment range for the opening angle of the slats: 0-100\%

Downwards closed / upwards horizontal

The parameter Slat position after movement in \% allows you to define the behavior of the slats after a movement for the channel. If you set the parameter to Operating position, you can set an opening angle to be adopted by the slats after every downward movement.

Master $/$ Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$ -Blind	Express settings for blind			
	Slat control Movement of the existing blind Slat position after movement in \%	Downwards closed / upwards horizon- tal		
	Last slat position		\quad	No reaction
:---				

The preset value of 50% corresponds to a slat opening angle of about 45°. Since this position is set on a time-controlled basis, please refer also to the section Slat rotation time --> 117

Note:

Unless otherwise indicated in the following instructions, the examples refer to this type of blind.

Blind type: Downwards tilted / upwards horizontal (with operating position)

- Upward movement: Slats in horizontal open position (slat position 0\%)
- Downward movement: Slats tilted down in the operating position (slat position in operating position)
- Possible adjustment range for the opening angle of the slats: 0% to the operating position if blind not in lower end position $0-100 \%$ if blind in lower end position

Downwards tilted / upwards horizontal

The parameter Slat position after movement in \% allows you to define the behavior of the slats after a movement for the channel.

Master / Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$ -Blind	Express settings for blind	
	Slat control Movement of the existing blind Slat position after movement in \%	Downwards tilted / upwards horizontal
	Last slat position	
	Existing slat position during downwards movement in \%	50

You can use the parameter Existing slat position during downwards movement in \% to set the opening angle for the operating position.

Blind type: Downwards closed / upwards closed (without operating position)

- Upward movement: Slats closed upwards (slat position 0\%)
- Downward movement: Slats closed downwards (slat position 100\%)
- Possible adjustment range for the opening angle of the slats 0-100\%

Downwards closed / upwards closed

The parameter Slat position after movement in \% allows you to define the behavior of the slats after a movement for the channel. If you set the parameter to Operating position, you can set an opening angle to be adopted by the slats after every downward movement.

```
Master / Ext. 1/2
Output 1+2 / 3+4 / 5+6
/ 7+8
-Blind
Express settings for blind
Slat control
\begin{tabular}{ll}
\begin{tabular}{l} 
Movement of the existing \\
blind \\
Slat position after movement \\
in \%
\end{tabular} & Downwards closed / upwards closed \\
& No reaction slat position \\
\hline & Operating position \\
Operating position of slat in \% & 75
\end{tabular}
```

The preset value of 75% corresponds to a slat opening angle of about 45°. Since this position is set on a time-controlled basis, please refer also to the section Slat rotation time --> 117

Blind type: Downwards tilted / upwards closed (with operating position)

- Upward movement: Slats closed upwards (slat position 0\%)
- Downward movement: Slats tilted down in the operating position (slat position in operating position)
- The slats are closed on reaching the lower end position (slat position 100\%)
- Possible adjustment range for the opening angle of the slats: 0% to the operating position if blind not in lower end position $0-100 \%$ if blind in lower end position

Downwards tilted / upwards closed

The parameter Slat position after movement in \% allows you to define the behavior of the slats after a movement for the channel.

Master / Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $17+8$ -Blind	Express settings for blind			
	Slat control			
Movement of the existing				
blind				
Slat position after movement				
in \%			\quad	Last slat position
:---				

You can use the parameter Existing slat position during downwards movement in \% to set the opening angle for the operating position.

Slat position after movement

With every blind movement, the position of the slats also changes, depending on the direction of motion. After the movement, the slats stay in this new position. With this application, however, you can automatically move or reset the slats to a desired position after a movement.

Using the parameter "Slat position after movement", you can define the behavior of the slats after a movement for each blind channel.

The following parameters are available for this:

- No reaction (stay in the current position)
- Operating position (move to operating position)
- Last slat position (move to the slat opening angle that the blind had before the start of the movement)
The slat opening angle you have defined is set after each positioning movement of the blind or after a manual motion command terminated by a stop telegram.
After a bus voltage failure or a download, the last slat position is not clearly defined, so the last slat position is assumed to be the operating position.

9.5 Locking manual mode

You can control the connected drives via the group objects the for manual operating options or via automatic control. There are two options available for the manual operating options:

- Move manually to height position and slat opening angle (for blind only) via Up/ Down/Step/Stop commands
- Move manually to height position and slat opening angle (for blind only) using absolute position commands
If you want to stop manual operation temporarily, you can enable lock of manual mode for each output channel:

Master / Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$ -Blind / roller shutter	Express settings for blind / roller shutter
	Locking manual mode
	Disabled
	Manual locking

Depending on the setting, manual operation is disabled or enabled when a new telegram value is received:

- "Manual locking" = "at object value "0" If "Manual locking" = "0": manual operation disabled (manual locking active) If Manual locking = " 1 ": manual operation enabled (manual locking inactive)
- "Manual locking" = "at object value "1"

If "Manual locking" = "0": manual operation enabled (manual locking inactive) If "Manual locking" = "1": manual operation disabled (manual locking active)

Group objects

No.	Name	Object function	Length	Behavior	Data Type
35	Master Output 1+2 name of the channel	Locking manual mode	1 bit	Received	1.003 Enable

9.6 Scenes

If you want to change multiple room functions simultaneously at the press of a button or with a command, you can do so using the scene function. You can use a scene, for example, to switch on the room lighting, set the heating control to daytime operation and control the blinds.

Without the scene function, you would have to send a separate telegram to each actuator to get the same setting, since these functions can not only have different telegram formats, but also the telegram values have different meanings (e.g. value " 0 " for lighting OFF and for OPEN blind).

Enabling scenes

Following enabling of the scenes, the group object appears.

Group objects

No.	Name	Object function	Length	Behavior	Data Type
43	Master Output 1+2 name of the channel	Scene	1 byte	Received	18.001 scene control

Number of scenes

```
Master / Ext. 1/2
Output 1+2 / 3+4 / 5+6
/ 7+8
-Blind / roller shutter
-Scenes settings Required number of scenes 1(1-16)
```

You can use the scene function to include multiple channels in a scene control. Up to 16 different scenes are available for each output channel.

Each of the up to 16 scenes can in turn be disabled or enabled.

Master / Ext. 1/2 Output 1+2 / 3+4 / 5+6 / 7+8 -Blind / roller shutter -Scenes settings	Scene settings	
	Scene 1 (1-16)	Disabled
		Enabled
	Scene 1 Description	
	Scene 1 Address (0-63) Dependent: Global settings for scenes --> 24	Scene address 0-63
	Scene 1 Address (1-64) Dependent: Global settings for scenes --> 24	Scene address 1-64
	Scene 1 height in \%	0 (0-100)
	Scene 1 slat position in \%	0 (0-100)

For clarity, a short description can be stored for each scene.
Each of these scenes can be assigned one of 64 possible scene addresses 0 to 63 (corresponding to telegram values 0-63) or 1 to 64 (corresponding to telegram values $0-63$). This depends on the global settings for scenes. Global settings for scenes --> 24

You can store height positions and also, for blinds, slat opening angles as scene values. When the actuator receives a telegram calling a scene number, the drive is moved to the saved position and the slats are rotated. The scene positions you store during start-up can be overwritten later by the user if he wants to change them.

Time delay for scene processing

To avoid high power-on currents when switching to a complex scene, you can parameterize a time delay for each output channel. (Especially in the case of many motors)

Master $/$ Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$ -Blind $/$ roller shutter	Scene settings
-Scenes settings	Time delay for scene process- ing $(0 \ldots 255$, unit $=100 \mathrm{~ms})$

Calling and saving scene values

Scene values for the output relays are called using the object "Scene". After receiving a scene telegram, the device evaluates the sent scene address and controls the channels to the saved scene values.

If a reference movement is required before the drive is moved to the scene position, the reference movement is executed first and the drive then moves to the requested scene position. Calibration --> 143

If the "scene object" receives a scene telegram with learning bit " 1 ", then for all scenes assigned to the received scene address, the current height position and, in the case of blind drives, the current slat position are saved as the new scene value.

Note: If a scene address within a channel is assigned to multiple scenes (incorrect parameterization), only the last scene found with this scene address is called or saved. You can avoid this by assigning different scene addresses within a channel.

Telegram format

Telegrams for the scene function have the data format: $L \times D D D D D D$.
$L=$ learning bit
$X=$ not used
DDDDDD = called scene address
If the learning bit in a telegram has the value " 0 ", then the relay states saved for the scene address are called and set.

If the learning bit receives the value " 1 ", then the current output states are saved as new scene values for the received scene address.

Take the scene address (0-63) and add 128 to get the value for learning the scene.

Examples:

Telegram value	Binary	Hexadecimal	Scene address
0	00000000	00	Call scene address 0
1	00000001	01	Call scene address 1
29	00011101	$1 D$	Call scene address 29
57	00111001	39	Call scene address 57
63	00111111	$3 F$	Call scene address 63
$128(0+128)$	10000000	80	Learning scene address 0
$129(1+128)$	10000001	81	Learning scene address 1
$157(29+128)$	10011101	$9 D$	Learning scene address 29
$185(57+128)$	10111001	B9	Learning scene address 57
$191(63+128)$	10111111	BF	Learning scene address 63

Overwrite scene values during download

Master / Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$	Scene settings	
-Blind / roller shutter		
-Scenes settings	Overwrite scene values of actuator during download	Disabled
		Enabled

If you have enabled the parameter "Overwrite scene values in actuator during download", the scene values saved in the device will be overwritten with your preset values on downloading. If you do not want to overwrite the values in the device when downloading, you must disable the parameter. In this case, the parameterized scene values are only written to the device memory during the first download. If an application download is then carried out, the scene values in the device memory are retained.

Priority

The scene function has the same priority as the normal blind / roller shutter function with control over the 4 group objects: "Movement in manual mode" and "Stop/ step in manual mode" (for roller shutters: "Stop in manual mode") For positioning: "Height position in manual mode" and "Slat position in manual mode" (for blind only).
This should be taken into account with regard to the priority of the higher-level functions.

9.7 Central function for blind

Enable central function for each drive

The central function is enabled or disabled here for each drive.

Master / Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$ -Blind / roller shutter	Express settings for blind / roller shutter
	Central function

The global settings and explanations of the central function can be found in the chapter General settings. (Enable central functions --> 23)
Using the central function, you can simultaneously open or close multiple blind channels with a telegram via the object Central - Move up/down blind.

Group objects

Group objects of the central function

No.	Name	Object function	Length	Behavior	Data Type
2	Central	Move up/down roller shutter	1 bit	Received	1.008 up/down
3	Central	Move up/down blind	1 bit	Received	1.008 up/down

9.8 Status response

Master / Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ / $7+8$ -Blind / roller shutter	Express settings for blind / roller shutter	
	Status of height	Enabled
		Disabled
	Status of slat (for blind only)	Enabled
		Disabled
	Status of moving	Enabled
		Disabled

Each blind channel can provide different status responses, depending on how it is enabled. The following group objects are available and can be disabled:

Group objects

No.	Name	Object function	Length	Behavior	Data Type
46	Master Output 1+2 name of the channel	Feedback for height	1 byte	Sending	5.001 Percent $(0 . .100 \%)$
47	Master Output 1+2 name of the channel	Feedback for slat (blind)	1 byte	Sending	5.001 Percent $(0 \ldots .100 \%)$
51	Master Output 1+2 name of the channel	Feedback for moving	1 bit	Sending	1.010 Start/Stop
52	Master Output 1+2 name of the channel	Feedback for last direction	1 bit	Sending	1.008 up/down

Status of height

The current position of the drive is provided as a value between $0-100 \%$. The corresponding status object "Feedback for height" sends the value on the bus if the drive has reached a fixed position after a movement.

Status of slat (for blind only)

The current angle of rotation of the blind slats is provided as a value between $0-100 \%$. The corresponding status object "Feedback for slat" sends the value on the bus if the drive/slat has reached a fixed position after a movement.

Status of moving

The status object "Feedback for moving" sends the movement status of the drive. This information is sent directly.

- Sends a "1" when the movement/drive is started
- Sends a "0" when the movement/drive is stopped

The status object "Feedback for last direction" sends the value for the last direction of movement of the drive.

- Sends a "1" if the drive has been moved down or the slat has been closed by one step.
- Sends a "0" if the drive has been moved up or the slat has been opened by one step.

Automatic status

Once the function "Status of automatic locking" has been enabled, a new group object is available for the channel.

Group objects

Group objects of status response of automatic mode

No.	Name	Object function	Length	Behavior	Data Type
48	Master Output 1+2 name of the channel	Feedback for automatic mode	1 bit	Sending	1.003 Enable

The feedback object sends a " 1 " if automatic locking is active.
The feedback object sends a " 0 " if automatic locking is inactive.

9.9 Activating extended settings for blind

```
Master / Ext. 1/2
Output 1+2/ 3+4/5+6 Express settings for blind
-Blind
Extended settings for blind No
Yes
```

To activate the extended settings for blind, you must enable them here.

9.10 Activating extended settings for roller shutter

Master $/$ Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$ - Roller shutter	Express settings for roller shutter
	Extended settings for roller shutter
	No

To activate the extended settings for roller shutter, you must enable them here.

10 Extended settings for blind/ roller shutter

On the Extended settings for blind tab, you can defined additional settings and enable or disable additional functions.

On the Express settings for blind tab, activate the Extended settings for blind.

10.1 Extended drive timing

For special drives and blinds, you can adjust the drive times by means of additional parameters.

Master / Ext. 1/2 Output 1+2/3+4/5+6 / 7+8 -Blind / roller shutter	Extended drive timing	
-Extended drive timing	Idle time until upward movement (0...255, unit $=10 \mathrm{~ms}$)	0
	Startup delay ($0 . . .255$, unit $=$ 10 ms)	0
	Deceleration delay (0...255, unit $=10 \mathrm{~ms}$)	0
	Additional startup time when opening slat downwards (0...255, unit $=10 \mathrm{~ms}$)	0
	Additional startup time when opening slat upwards (0...255, unit $=10 \mathrm{~ms}$)	0

Idle time until upward movement

If the blind used has an idle time in the closed lower position between pulling on the main strap and the first upward movement, you can compensate for this delay in this way.
The idle time can also be used when using a roller shutter to compensate for the roller shutter opening.
Example:
A value $=10$ gives an idle time of $10 \times 10 \mathrm{~ms}=100 \mathrm{~ms}$

```
Master / Ext. 1/2
Output 1+2 / 3+4 / 5+6
/ 7+8
-Blind / roller shutter
-Extended drive timing Idle time until upward move-
ment (0...255, unit = 10 ms)
```


Startup delay

Some motors do not bring full power directly when switched on, but only after a few milliseconds. You can use the time setting for the start-up delay to compensate for this.
A value $=10$ gives a start-up delay of $2 \times 10 \mathrm{~ms}=20 \mathrm{~ms}$

```
Master / Ext. 1/2
Output 1+2 / 3+4 / 5+6
/ 7+8
-Blind / roller shutter
-Extended drive timing }\begin{array}{l}{\mathrm{ Startup delay (0...255, unit = 0}}\\{10\textrm{ms})}
```


Deceleration delay

There are some motors that continue running for several milliseconds after they are switched off. This can also be caused by large and heavy blinds/roller shutters. If you notice this behavior, you can compensate for it using the setting for the deceleration delay.
A value $=6$ gives a deceleration delay of $6 \times 10 \mathrm{~ms}=60 \mathrm{~ms}$.
In this way, the motor will be switched off 60 ms earlier.

Master / Ext. $1 / 2$		
Output $1+2 / 3+4 / 5+6$	Extended drive timing	
$/ 7+8$		
-Blind / roller shutter		
-Extended drive timing	Deceleration delay $(0 \ldots 255$, unit $=10 \mathrm{~ms})$	0

Additional start-up time on opening the slat (for blind only)

Some types of blinds require an additional start-up supplement before the first reaction of the slats when opening the slats due to the tensioning and releasing of the slat straps. This depends on the current slat position. The following parameters can be used to set a start-up supplement for the upper and lower slat positions.

```
Master / Ext. 1/2
Output 1+2 / 3+4 / 5+6
/ 7+8
-Blind / roller shutter
Extended drive timing
opening slat downwards 0
(0...255, unit = 10 ms)
Additional startup time when
opening slat upwards (0...255, 0
unit = 10 ms)
```

With these parameters for Additional startup time when opening slat downwards, set the start-up delay for an upward movement until the slat is rotated when the slats are in the open position (0\%) (the previous blind movement was an upward motion):
Additional startup time when opening slat upwards: the start-up delay until the slat is rotated, which you define here, is always taken into account when opening the blind if the slat is in the closed position (100\%) (the previous blind movement was a downward movement):

10.2 Automatic, Locking \& Calibration settings

Automatic mode

In addition to manual control of the blind / roller shutter drives (via the group objects for the manual operating options), the software application also provides you with another set of group objects for automatic control.

Automatic control can be performed by other bus devices, e.g. presence detectors or light controllers, or via a building control system. Once you have activated automatic control for a channel, you can initially position the connected drive with equal priority using manual control or automatic control. The drive reacts identically on receiving control telegrams from one of the two types of control.

Master / Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$	Automatic, Locking \& Calibration settings
-Blind / roller shutter	
 Calibration settings	Automatic mode
	Automatic mode

In order to use the automatic mode, you must first activate the function in the ETS. Once automatic mode has been enabled, new group objects are available for the channel.

Group objects

Group objects of automatic mode "Blind"

No.	Name	Object function	Length	Behavior	Data Type
36	Master Output 1+2 name of the channel	Movement in au- tomatic mode	1 bit	Received	1.008 up/down
37	Master Output 1+2 name of the channel	Stop/step in automatic mode (blind)	1 bit	Received	1.007 Step
37	Master Output 1+2 name of the channel	Stop in automat- ic mode (roller shutter)	1 bit	Received	1.007 Step
38	Master Output 1+2 name of the channel	Height position in automatic mode	1 byte	Received	5.001 Percent $(0 . .100 \%)$
39	Master Output 1+2 name of the channel	Slat position in automatic mode (blind)	1 byte	Received	5.001 Percent $(0 \ldots .100 \%)$

The group objects for manual operation and automatic mode have equal priority. The drive always executes the command it received last on one of the objects.

Using parameter settings and objects, you can modify the operation of the two control options. You also have the possibility of defining the reciprocal influence of manual control and automatic control.

Enabling/disabling automatic mode

If operation with equal priorities for manual operation and automatic mode is not always suitable for your application, you can disable and re-enable automatic mode using an additional object as required:

Master / Ext. 1/2 Output 1+2/3+4/5+6 / 7+8 -Blind / roller shutter	Automatic, Locking \& Calibration settings	
-Automatic, Locking \& Calibration settings	Automatic mode	
	Lock of automatic mode	Disabled
	5	Enabled
	Automatic locking	At object value "1"
		At object value "0"
	Status of automatic locking	Disabled
		Enabled
	Behavior on deactivating automatic locking via object	No reaction
		Accept current automatic position

Once the function "Lock of automatic mode" and "Status of automatic locking" has been enabled, new group objects are available for the channel.

The feedback object sends a " 1 " if automatic locking is active.
The feedback object sends a " 0 " if automatic locking is inactive.

Group objects

Group objects of automatic mode "Lock"

No.	Name	Object function	Length	Behavior	Data Type
40	Master Output 1+2 name of the channel	Lock of automat- ic mode	1 bit	Received	1.003 Enable
48	Master Output $1+2$ name of the channel	Feedback for automatic mode	1 bit	Sending	1.003 Enable

Depending on the setting, the automatic locking is activated or deactivated when a new telegram value is received:

- "Automatic locking" = "at object value 0"

If "Automatic locking" = "0": automatic locking is active.
If "Automatic locking" = " 1 ": automatic locking is inactive.

- "Automatic locking"= "at object value 1"

If "Automatic locking" = " 0 ": automatic locking is inactive.
If "Automatic locking" = " 1 ": automatic locking is active.
In addition, you can set the behavior of the drive to the end of automatic locking.
Furthermore, you can separately define the response of automatic control on receiving a manual control telegram.

Defining dependency between automatic function and manual control

You can use the following parameter to define the reaction of the automatic function on receiving a control telegram from the manual operating options (Movement in manual mode, Stop/step in manual mode, Height position in manual mode, Slat position in manual mode, and calling up scenes):

Master / Ext. 1/2 Output $1+2 / 3+4 / 5+6$ / 7+8 -Blind / roller shutter	Automatic, Locking \& Calibration settings	
-Automatic, Locking \& Calibration settings	Automatic mode	
	Reaction in automatic mode on receipt of a manual object value	Automatic mode remains enabled
	5	Automatic mode temporarily disabled
	Deactivation time for automatic mode	1 min (1 min - 24 h)

Permanent deactivation of the automatic function can only be canceled by a telegram terminating automatic locking via the automatic locking object. The action you set in the parameter "Behavior on deactivating automatic locking via object" will be executed.

Once a temporary deactivation has elapsed, the drive remains in its current position until the next control telegram.

Locking function

Using the locking function, you can move a blind / roller shutter to a desired locking position. The state of the output channel cannot be changed by other control commands as long as the lock is active. Only a higher-level function with a higher priority can still be used to move the drive to a different position. You can enable the locking function individually for each output channel.

Master / Ext. 1/2 Output $1+2 / 3+4 / 5+6$ / 7+8 -Blind / roller shutter -Automatic, Locking \& Calibration settings	Locking function	
	Locking function	Disabled
		Enabled
	Locking	At object value "1"
		At object value "0"
	Status of locking signal	Disabled
		Enabled
	Behavior at start of locking	No reaction
		Up
		Down
		Move to position
	Height position at start of locking in \%	0 (0-100)
	Slat position at start of locking in \%	0 (0-100)
	Behavior at end of locking	No reaction
		Up
		Down
		Move to position prior locking
		Accept current automatic position
	Behavior after download	Disabled
		Enabled
		As before download
	Behavior after bus voltage recovery	Disabled
		Enabled
		As before bus voltage failure

Once the "Locking function" and "Status of locking signal" have been enabled, new group objects are available for the channel. You can activate and deactivate a channel lock using the locking object.

Group objects

Group objects of locking func-

No.	Name	Object function	Length	Behavior	Data Type
41	Master Output 1+2 name of the channel	Locking	1 bit	Received	1.003 Enable
49	Master Output $1+2$ name of the channel	Feedback for drive locking	1 bit	Sending	1.003 Enable

If the locking object receives a telegram with the object value that you set for the parameter Lock, all other functions for the channel are disabled. You can define the reaction using the parameter Behavior at start of locking.
If the locking object receives a telegram with the object value opposite of that for activation, the lock is canceled and the drive adopts the state that you defined in the parameter Behavior at end of locking.
The Feedback for drive locking object sends a "1" if the lock is active.
The Feedback for drive locking object sends a "0" if the lock is inactive.

Behavior of the drive at start of locking

Set how the drive is to behave when the locking function becomes active:

- No reaction: With the latest firmware the drive stops in its current position.
- Up: the drive moves to the upper end position.
- Down: the drive moves to the lower end position.
- Move to position: the drive moves to the defined position for height and slat (for blind only).
Behavior at start of locking = move to position; height position at start of locking $=40 \%$; slat position at start of locking $=50 \%$

Once the drive has performed the desired action, it remains in this position and cannot be operated while the locking function is active. Only when a function with a higher priority becomes active will the reaction defined there be executed.
The locking function always switches without a delay. During locking, the telegram received most recently is saved and delay times and staircase lighting times continue.

Behavior at end of locking

If the locking function has been switched off again by a new object value, you can operate the drive normally again. If the drive is to perform an automatic action after the locking function has been terminated, you can define it with this parameter:

- No reaction: the drive remains in its current position.
- Up: the drive moves to the upper end position.
- Down: the drive moves to the lower end position.
- Move to position prior locking: the drive returns to the position it had before the locking.
- Accept current automatic position: this setting is only useful if the automatic function is active. The drive moves to the last automatic position requested.

Lock behavior after download

After a download, the lock function is also set as in the case of bus voltage recovery. The parameter "Behavior after download" determines which state is set.
If the "Behavior after download" parameter is set to "As before download", the locking function is activated as previously set and the relay is switched accordingly.

Lock behavior after bus voltage recovery

- Disabled

The locking function is not activated after a bus voltage recovery, regardless of the state it had before the bus voltage failure.

- Enabled

After a bus voltage recovery, the locking function becomes active and the output is switched to the state that you defined via the parameter Behavior at start of locking. If you have set the value "No reaction" here, the output is locked in its current state.

- As before bus voltage failure

The locking function is brought to the state that was active before the bus voltage failure. If the locking function was active, the output is controlled by its settings in the parameter Behavior at start of locking.

Movement range limits

For certain applications, e.g. in the case of open tilting windows or window boxes for flowers in the summer, it may be helpful or necessary to limit the possible movement range of a drive temporarily or permanently.

NOTE

Blinds / roller shutters can be damaged.

- The blinds / roller shutters may move outside the movement range limits and into any open windows. For this reason, consider where the reference movement is to be made (Calibration --> 143).
- After a download or bus voltage recovery, a reference movement is made after initialization, even if the "General reference movement" function is disabled. The blinds / roller shutters may move outside the movement range limits and into any open windows. (Calibration --> 143)
- After a download or bus voltage recovery, the movement range limitation may be disabled because no activation telegram has been received.
- For this reason, consider where the reference movement is to be made: The reference movement after initialization is generally carried out towards the upper end position. A reference movement to the lower end position is only carried out if the parameter "Reference position" is set to "lower".
- Functions with a higher priority, such as safety function or alarm function, can also control blinds / roller shutters outside the movement range limitation.

If movement range limitation is active, manual operation, automatic functions or scene calls can only move the drive within the defined limit. The limitation also applies to motion commands from functions a lower priority. Only a higher-level function with a higher priority can still be used to move the drive to a different position outside the limit. This must be taken into account if the movement range is to be limited due to an obstacle. Obstacles in operation must be avoided.

You can activate the limits of the movement range individually for each output channel (enabled).

Master / Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$ -Blind / roller shutter Calibration settings	Movement range limits		
	Movement range limits	\quad	Disabled
:---			
Limit movement range		Enabled	
:---			
Immediately after bus voltage			
recovery			
At object value "1"			

Group objects of the function
"Movement range limits"

After the function "Movement range limits" has been enabled, the parameter "Limit movement range" appears. Here you can define when and how the function is activated for the channel.

- Immediately after bus voltage recovery: the function becomes active immediately after bus voltage recovery or after a download. The drive can only move between the limits. Only a function with a higher priority can move the drive to a position outside the limit.
- At object value " 1 ": the object value " 1 " activates the limit. If the object value " 0 " is received, the entire movement range is enabled again.
- At object value " 0 ": the object value " 0 " activates the limit. A telegram with the object value " 1 " deactivates the limit.
In the case of activation by an object value, an additional group object "Activate movement range limits", which can be used to switch the limit on and off, appears for this channel.

No.	Name	Object function	Length	Behavior	Data Type
44	Master Output 1+2 name of the channel	Activate move- ment range limits	1 bit	Received	1.003 Enable
50	Master Output 1+2 name of the channel	Feedback for range limitation	1 bit	Sending	1.003 Enable

In addition, a status feedback object can be enabled that sends the status of the movement range limits function to the bus.
The value of the status feedback object receives the object value " 1 " as soon as the movement range limitation becomes active and the drive reaches the specified limit.

- If the drive is already within the specified limit when the movement range limitation is activated, the status feedback object immediately sends the object value " 1 ".
- If the movement range is left or the limit is canceled due to a function with a higher priority, the object value changes to " 0 ".

You can set the limits of the movement range using other parameters:

Master $/$ Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$	Movement range limits
-Blind / roller shutter	
-Automatic, Locking \&	Limit movement position
Calibration settings	
	Limit range at upper position

If limitation is active, the drive will only move between the limits. The limitation applies to all motion commands from manual operation, automatic functions, scenes, and motion commands from functions with a lower priority. It is possible to limit either the upper position or the lower position.

Limit range at lower position with upper limit $=0 \%$ (fix) and lower limit $=25 \%$

If limitation is active, the drive will only move between the limits.
If the drive is outside the limits when movement range limitation is activated, it is automatically moved to the nearest limit and stops there.
If a drive reaches its movement range limits, this can be signaled to the bus via a status feedback object. Functions that depend on it, e.g. opening a window, can now be executed.

Master / Ext. 1/2 Output 1+2 / 3+4 / 5+6 / 7+8 -Blind / roller shutter	Movement range limits	
-Automatic, Locking \& Calibration settings	Limit movement position	Limit range at lower position
5	Upper limit value in \% (fix)	0
	Lower limit value in \%	100 (0-100)
	Limit movement position	Limit range at upper position
	Upper limit value in \%	100 (0-100)
	Lower limit in \% (fix)	0

The movement range limitation function is often selected in summer when solar radiation is strong, so that it does not heat up rooms or dazzle people. The drive can no longer be moved manually all the way up, but in the event of a storm the weather alarm will move the blind to the safe position.

Drive behavior after end of movement restriction

If the limitation of the movement range is determined by object values and a new object value cancels an active limitation, then you can operate the drive normally again. If the drive is to perform an automatic action in this case, you can define it with the following parameter:

Master $/$ Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$ - Blind $/$ roller shutter	Movement range limits	
 Calibration settings	Behavior at the end of movement restriction	No reaction
	Up	
	Down Move to position prior to movement restriction	
	Accept current automatic position	

Values to be set:

- No reaction: the drive remains in its current position.
- Up: the drive moves to the upper end position.
- Down: the drive moves to the lower end position.
- Move to position prior to movement restriction: the drive returns to the position it had before the movement restriction.
- Accept current automatic position: this setting is only useful if the automatic function is active. The drive moves to the last automatic position requested.

Calibration

The calibrating function is activated centrally on the Global settings for roller shutter and blind tab with the parameter Calibration. Calibration --> 34

If the function has been activated globally, the following group object is available for all channels and each channel can use the calibrating function:

No.	Name	Object function	Length	Behavior	Data Type
17	Central	Calibration	1 bit	Received	1.010 Start/Stop

The device calculates the current position of a drive from the running times you have set for the drive and from the control commands it executes. This calculation must be performed because there is no feedback from the drive regarding its position. Even if you have set the running times very precisely, the internally calculated height position will deviate slightly from the actual height position after a number of movements. This is due to mechanical tolerances and weather conditions (temperature fluctuations, frost, rain, etc.).
The blind channel can reset these deviations by means of reference runs. For this purpose, it moves the drives to the upper or lower end position. After the reference run, the internal position calculation starts again from a fixed value. Any deviations that have arisen in the meantime are thus eliminated.
Note: The calibration function is especially important if you work a lot with position commands and high positioning accuracy is required. If the blind is controlled exclusively using the basic functions and position commands do not matter, then you do not need this function.

Operating principle

A reference movement can be triggered by a telegram on the central calibration object or after a certain number of movements. After a reference movement has been triggered, the drive moves to the desired reference position (end position). If you have set both end positions as reference positions, the drive will move to the nearest end position, depending on its current position. In order to ensure that the drive reliably reaches the desired end position, the actuator adds a running time allowance of 5% of the total running time to the calculated travel time for each reference movement.
Note: If a weather alarm or other higher-level function is activated during a calibrating function, the calibrating function is canceled and the higher-level function is executed.
Per channel:

Master / Ext. 1/2	
Output $1+2 / 3+4 / 5+6$ $/ 7+8$	Calibration
-Blind / roller shutter	
-Automatic, Locking \&	Calibration
Calibration settings	

Trigger of calibration

Master $/$ Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$ -Blind / roller shutter Calibration settings	Calibration	
	Number of movements calibration "1" on calibration object	
	Velay of calibration via object (0...255, unit =1 s) Number of movements until calibration	$\mathbf{0}$

Triggering a reference movement after a number of movements

The channel adds up the total number of movements, irrespective of the control command that triggered the movements. Once the defined number of movements has been reached, the drive first performs a reference movement before the next positioning command. It then moves to the requested position. After the reference movement, the movement counter is reset.

Trigger reference movement via group object

If the object "Calibration" receives the value " 1 ", a reference movement is started for all assigned channels. In order not to overload the power supply of the blind system, you can select a "Delay of calibration" for each channel. If a new value " 1 " is received on the object during this delay time, the delay time is restarted. The object value " 0 " has no meaning.

Trigger reference movement after a number of movements or via group object
It is also possible to select a logic operation from the number of movements or the calibration telegram.

Reference position

After a reference movement has been triggered, the drive moves to the desired parameterizable reference position (end position). If you have set both end positions as reference positions, the drive will move to the nearest end position, depending on its current position.

Master / Ext. $1 / 2$	
Output $1+2 / 3+4 / 5+6$ $/ 7+8$	Calibration
-Blind / roller shutter	
 Calibration settings	Reference position
	upper
	lower

Automatic calibration

Each time the drive moves to the defined end position due to a positioning command, the calibrating function is performed. This means that a running time allowance of 5% of the total running time is added to the calculated travel time required by the drive to ensure that the drive reliably reaches the desired end position. Once the end position has been reached, the movement counter is also reset.

Master / Ext. $1 / 2$		
Output $1+2 / 3+4 / 5+6$	Calibration	
$/ 7+8$		upper
-Blind / roller shutter		
 Calibration settings	Automatic calibration	lower
		upper and lower

Position after calibration via object

The height position after the reference movement can be defined using the parameter "Position after calibration via object". If a movement is to be made to a "new position", set the height and, in the case of blinds, also the opening angle of the slats, in the movement range form 0% to 100%.

If the channel receives an absolute positioning command during the reference movement, it sets the desired position after the reference movement. In this case, the settings in the parameter "Position after reference movement via object" have no effect. All other control commands interrupt the calibrating function. The drive reacts to the received control commands.

Master / Ext. 1/2 Output 1+2/3+4/5+6 / 7+8 -Blind / roller shutter	Calibration	
-Automatic, Locking \& Calibration settings	Position after calibration via object	Position prior reference movement
		remain in reference position
	5	new position
	Height position after calibration in \%	0 (0-100)
	Slat position after calibration in \%	0 (0-100)

Reference movement after initialization

The reference movement after a download or bus voltage recovery serves to obtain an exact starting position for further positioning movements.

Note: The reference movement after initialization is always carried out, even if the function "General reference movement" is disabled.

The reference movement is triggered by an absolute positioning command. These include, for example, receiving a value on the objects "Height position in manual mode" or "Height position in automatic mode", the calling of scenes, or movement to an absolute position in the case of weather alarm, alarm or lock. If, after initialization, the object "Move object in manual mode" receives a value that moves the blind / roller shutter to the upper end position, the actuator automatically evaluates this movement as a reference movement.

The reference movement after initialization is generally carried out towards the upper end position. If you have enabled sending of the status messages "Feedback for height" and/or "Feedback for slat", this automatically sends the current status.

Reference movement with movement range limitation:

NOTE

Blinds / roller shutters can be damaged.

- The blinds / roller shutters may move outside the movement range limits and into any open windows. For this reason, consider where the reference movement is to be made.
- After a download or bus voltage recovery, a reference movement is made after initialization, even if the "General reference movement" function is disabled. The blinds / roller shutters may move outside the movement range limits and into any open windows.
- For this reason, consider where the reference movement is to be made: The reference movement after initialization is generally carried out towards the upper end position. A reference movement to the lower end position is only carried out if the parameter "Reference position" is set to "lower".

[^1]
10.3 Safety and alarm settings

Safety function for blind

The global safety function is activated on the Extended settings tab with the parameter Device safety and the global settings are parameterized there. Device safety --> 22

The effect of the safety function can be parameterized here for each channel. You can enable the safety function individually for each drive.

Master / Ext. 1/2 Output 1+2/3+4/5+6 17+8 -Blind / roller shutter	Safety function	
-Safety and alarm settings	Safety function	Disabled
5		Enabled
	Behavior at start of safety	No reaction
		Up
		Down
	5	Move to position
	Height position at start of safety in \%	0 (0-100)
	Slat position at start of safety in \%	0 (0-100)
	Behavior at end of safety	No reaction
		Up
		Down
		Move to position prior safety
		Accept current automatic position
	Behavior at exceeding cycle time	No reaction
		Up
		Down
	5	Move to position
	Height position on exceeding cycle time in \%	0 (0-100)
	Slat position on exceeding cycle time in \%	0 (0-100)

Following global enabling of the device safety, the group object appears.

Group objects

Group object for central safety	No.	Name	Object function	Length	Behavior	Data Type
	23	Central	Safety	1 bit	Received	1.005 alarm

The safety function is activated if the safety object receives a telegram with the object value that you defined with the parameter Device safety (Device safety --> 22). You can define the reaction using the parameter Behavior at start of safety.

- No reaction: the drive remains in its current position.
- Up: the drive moves to the upper end position.
- Down: the drive moves to the lower end position.
- Move to position: the drive moves to the defined position for height and slat (for blind only).

If the safety object receives a telegram with the object value opposite of that for activation, the safety function is canceled and the output relay adopts the state that you defined in the parameter Behavior at end of safety.

- No reaction: the drive remains in its current position.
- Up: the drive moves to the upper end position.
- Down: the drive moves to the lower end position.
- Move to position prior safety: the drive returns to the position it had before the safety telegram.
- Accept current automatic position: this setting is only useful if the automatic function is active. The drive moves to the last automatic position requested.

The device then waits for a telegram from an external sender within the globally set cycle time. If such a telegram is not received within the monitoring time, the parameter Behavior at exceeding cycle time is used to determine what is to happen.

- No reaction: the drive remains in its current position.
- Up: the drive moves to the upper end position.
- Down: the drive moves to the lower end position.
- Move to position: the drive moves to the defined position for height and slat (for blind only).

Priority

The safety function is a 1-bit group object with the highest priority. This means that this object takes precedence over the following group objects:

- Alarm object / Weather alarm objects / Lock object Priority of functions for roller shutter and blind --> 30
- Scene object
- Central Move up/down blind / roller shutter objects
- Blind / roller shutter automatic objects
- Blind / roller shutter manual objects

Alarm function

In the case of an alarm, the alarm function can be used to set each channel to a desired alarm state. The output is disabled for further operation. Only a higher-level function with a higher priority can still be used to switch the output to a different state. You can activate the alarm function individually for each output channel. The alarm function can be parameterized here for each channel.

Master / Ext. 1/2 Output 1+2 / 3+4/5+6 / 7+8 -Blind / roller shutter	Alarm function	
-Safety and alarm settings	Alarm function	Disabled
5		Enabled
	Alarm	At object value "1"
		At object value "0"
	Behavior at start of alarm	No reaction
		Up
		Down
	5	Move to position
	Height position at start of alarm in \%	0 (0-100)
	Slat position at start of alarm in \%	0 (0-100)
	Behavior at end of alarm	No reaction
		Up
		Down
		Move to position prior alarm
		Accept current automatic position
	Behavior after bus voltage recovery	Disabled
		Enabled
		As before bus voltage failure

Following enabling, the group object for this channel appears.

Group objects

No.	Name	Object function	Length	Behavior	Data Type
42	Master Output 1+2 name of the channel	Alarm	1 bit	Received	1.005 alarm

Object values for alarm

First select the object value that is to switch on the alarm function:

- At object value " 1 ": object value " 1 " switches on the alarm function. If the object value " 0 " is received, the alarm function is switched off again.
- At object value " 0 ": object value " 0 " switches on the alarm function. A telegram with the object value "1" deactivates the function again.
The alarm function is activated if the alarm object receives a telegram with the object value that you defined with the parameter Alarm. The reaction is defined by the parameter Behavior at start of alarm.
- No reaction: the drive remains in its current position.
- Up: the drive moves to the upper end position.
- Down: the drive moves to the lower end position.
- Move to position: the drive moves to the defined position for height and slat (for blind only).
Once the drive has performed the desired action, it remains in this position and cannot be operated while the alarm function is active. Only when a function with a higher priority becomes active will the reaction defined there be executed.
If the alarm object receives a telegram with the object value opposite of that for activation, the alarm function is canceled and the output relay adopts the state that you defined in the parameter Behavior at end of alarm.
- No reaction: the drive remains in its current position.
- Up: the drive moves to the upper end position.
- Down: the drive moves to the lower end position.
- Move to position prior alarm: the drive returns to the position it had before the alarm telegram.
- Accept current automatic position: this setting is only useful if the automatic function is active. The drive moves to the last automatic position requested.

Behavior of the alarm after bus voltage recovery

- Disabled: the alarm function is not activated after a bus voltage recovery, regardless of the state it had before the bus voltage failure.
- Enabled: after a bus voltage recovery, the alarm function becomes active and the output is switched to the state that you defined via the parameter Behavior at start of alarm.
- As before bus voltage failure: the alarm function is brought to the state that was active before the bus voltage failure. If the alarm function was active, the output is controlled by its settings in the parameter Behavior at start of alarm.

Priority

The alarm function is a 1-bit group object with high priority. The device safety function has the highest priority. The priority order for blind / roller shutter can be defined globally Priority of functions for roller shutter and blind --> 30. The alarm object takes precedence over the following group objects:

- Weather alarm objects / Lock object Priority of functions for roller shutter and blind --> 30
- Scene object
- Central Move up/down blind / roller shutter objects
- Blind / roller shutter automatic objects
- Blind / roller shutter manual objects

Weather alarm function

The weather alarms are activated globally on the Extended settings tab with the parameter Global settings for roller shutter and blind, and the global settings are parameterized there. Weather alarm function --> 29

There are now 5 different weather alarms available, together with their group objects.
The monitoring of the signals of the activated weather sensors can be carried out cyclically. The device then expects a telegram from the relevant sensor within the cycle time set. If such a telegram is not received within the monitoring time, the associated weather alarm is nevertheless triggered for safety reasons (if, for example, the sensor or the cable connection between sensor and blind channel is defective and no message would be sent in the event of a genuine alarm).

| Extended
 settings | Global settings for roller shutter and blind |
| :--- | :--- | :--- |
| Weather alarm function | Disabled |
| | Enabled |
| Monitoring time for wind alarm 1 | Disabled |
| | $1 \mathrm{~s} \ldots 12 \mathrm{~h}$ |
| Monitoring time for wind alarm 3 | Disabled |
| | $1 \mathrm{~s} \ldots 12 \mathrm{~h}$ |
| | Disabled |
| | $1 \mathrm{~s} \ldots 12 \mathrm{~h}$ |
| | Disabled |

Priority of weather alarms

The global priorities for the weather alarms are defined here.

Extended settings	Global settings for roller shutter and blind	
Priority of weather alarms	Wind alarm->Rain alarm->Frost alarm	
		Wind alarm->Frost alarm->Rain alarm
Rain alarm->Wind alarm->Frost alarm		

This priority setting applies to all blind and roller shutter channels for which the weather alarm function is enabled. The reactions to a weather alarm only become active if no weather alarm with a higher priority is already active. If a weather alarm is reset and another weather alarm with a lower priority is active at that time, the reactions of the alarm with the lower priority are now executed.

Group objects

Group object for weather alarms

No.	Name	Object function	Length	Behavior	Data Type
18	Central	Wind alarm 1	1 bit	Received	1.005 alarm
19	Central	Wind alarm 2	1 bit	Received	1.005 alarm
20	Central	Wind alarm 3	1 bit	Received	1.005 alarm
21	Central	Rain alarm	1 bit	Received	1.005 alarm
22	Central	Frost alarm	1 bit	Received	1.005 alarm

The effect of the weather alarm functions can be parameterized here for each channel. You can enable the weather alarm function individually for each drive.

Master $/$ Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$	Weather alarm function
-Blind $/$ roller shutter	
-Safety and alarm settings	Weather alarm function

With the weather alarms functions, you can protect the blinds or roller shutters against adverse weather effects such as wind, rain and frost. In the event of an alarm for one of these 5 possible weather events, the drives move into a safe position and stay there for the duration of the event (depending on the priorities of the other higher-level functions).

New parameters appear for the detailed setting of the alarm functions for three wind alarms, one rain alarm and one frost protection alarm.

Master / Ext.Ext. 1/2 Output 1+2 / 3+4/5+6 / 7+8 -Blind / roller shutter -Safety and alarm settings	Weather alarm function	
	Reacts on wind alarm 1	No
		Yes
	Reacts on wind alarm 2	No
		Yes
	Reacts on wind alarm 3	No
		Yes
	Use AND logic for wind alarms	No
		Yes
	Reaction on wind alarm(s)	Up
		Down
		Move to position
	Reaction on rain alarm	No reaction
		Up
		Down
		Move to position
	Reaction on frost alarm	No reaction
		Up
		Down
		Move to position

First select how the drive is to react to an active weather alarm. To protect against damage in the case of excessive wind speeds, you can individually assign one of the three wind sensor signals 1,2 or 3 to each channel. With the respective activation, the three signals of the wind alarms are logically "OR" linked or linked by means of the AND parameter.

When a weather alarm becomes active, the drive performs one of the following reactions according to your settings:

- No reaction: the alarm function is inactive.

The weather alarm function is switched off. In the case of an alarm, the channel is not disabled.

- Up: the drive moves to the upper end position. The weather alarm function is switched on and the alarm function is active.
- Down: the drive moves to the lower end position. The weather alarm function is switched on and the alarm function is active.
- Move to position: the drive moves to the defined safety position. The weather alarm function is switched on and the alarm function is active.
Once the drive has performed the desired reaction, it remains in this position and cannot be operated while the weather alarm is active. Only when a function with a higher priority becomes active will the reaction defined there be executed.

If the drive is to move to a specific safety position, you can define this position using parameters:

Master / Ext.Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$	Weather alarm function		
-Blind / roller shutter		\quad	-Safety and alarm
:---			
settings	\quad	Height position at weather	
:---			
alarm in \%			
Slat position at weather alarm			
in \% (0-100)	$\quad \mathbf{0 (0 - 1 0 0)}$		

This safety position is valid for all three weather alarms if you have selected the parameter value "Move to position" as the reaction to a weather alarm.

Drive behavior after end of weather alarm

Once the sensor values of the weather sensors have returned to the normal measuring range, the weather alarms are deactivated again. You can define a reaction to be performed by the drive as soon as there is no longer any weather alarm active:

Master / Ext.Ext. 1/2 Output $1+2 / 3+4 / 5+6$ $/ 7+8$	Weather alarm function	
-Blind / roller shutter		
-Safety and alarm settings	Behavior at end of all weather alarms	No reaction
	Up	
	Down	
	Move to position prior weather alarm	
	Accept current automatic position	

The drive then performs the following functions:

- No reaction: the drive remains in its current position. The alarm function is terminated.
- Up: the drive moves to the upper end position. The alarm function is terminated.
- Down: the drive moves to the lower end position. The alarm function is terminated.
- Move to position prior weather alarm: the drive returns to the position it had before the weather alarm. The alarm function is terminated.
- Accept current automatic position: this setting is only useful if the automatic function is active. The drive moves to the last automatic position requested. The alarm function is terminated.

Failure and download behavior

You can enable this function individually for each drive. The behavior of the drive in the case of a bus voltage failure / bus voltage recovery and application download is defined.

NOTE

Behavior of blind and shutter outputs has changed.
The Dimmer Master does not have enough power to move all blind and shutter channels into position or to move them up or down. Only the following options are available here:

- Relay state after bus voltage failure: No reaction
- Relay state after bus voltage failure: Stop

Master / Ext. 1/2 Output 1+2 / 3+4 / 5+6 / 7+8 -Blind / roller shutter -Safety and alarm settings	Failure and download behavior	
	Failure and download behavior	Disabled
5		Enabled
	Relay state after bus voltage failure	No reaction
		Stop
	Relay state after bus voltage recovery	Stop
		Up
		Down
		Move to position
		As before bus voltage failure
	Height position at bus voltage recovery in \%	0 (0-100)
	Slat position at bus voltage recovery in \%	0 (0-100)
	Relay state at end of download	Stop
		Up
		Down
		Move to position
		As before download
	Height position at end of download in \%	0 (0-100)
	Slat position at end of download in \%	0 (0-100)

Relay behavior after bus voltage failure

If the bus voltage falls below 18 V , the drive can be switched to a parameterized state. The drive can either be defined as stopped (Stop) or remain in the state it had before the failure (No reaction). At the same time, the current position of the relay is saved in the device.

Possible settings:

- No reaction: the drive remains in its current state, i.e. it remains stationary or it continues to execute a current movement until the running times have elapsed.
- Stop: the drive stops immediately.

Relay behavior after bus voltage recovery

In the case of bus voltage recovery, the relay can adopt a parameterized state.

Possible settings:

- Stop: the drive stops immediately.
- Up: the drive moves to the upper end position.
- Down: the drive moves to the lower end position.
- Move to position: the drive moves to the defined position for height and slat (for blind only).
- As before bus voltage failure

With the parameter "As before bus voltage failure", the relay adopts the state that was saved in the device at the time of the bus voltage failure. Any subsequent manual switchings are overwritten.

Priority:

The reaction to the behavior set here for bus voltage recovery has a low priority. If a function with a higher priority is activated for the drive directly after bus voltage recovery, the settings described below apply to these functions.

Relay states caused by higher-priority functions (higher-level function) take precedence over behavior after bus voltage recovery.

Behavior after download

After the ETS download, the channel can adopt a parameterized state.
If an internal defect or a faulty download results in a state in which the application is not operational, the device will not react. The output relays remain in their last position.
If you wish to activate the behavior after ETS download for a drive, you must parameterize a "relay state at end of download" for each channel.

Possible settings:

- Stop: the drive stops immediately.
- Up: the drive moves to the upper end position.
- Down: the drive moves to the lower end position.
- Move to position: the drive moves to the defined position for height and slat (for blind only).
- As before download: the drive remains in its current state after a download.

Priority

Relay states caused by higher-priority functions take precedence over behavior after ETS download.
Example: OR logic operation with parameterized value of the logic object after bus voltage recovery $=1$, prevails and switches the output.

11 Express settings for roller shutter

Roller shutters protect residents, furnishings and plants against too much sun and UV radiation. The roller shutter prevents the excessive heating of rooms from exposure to sunlight. The protection offered by roller shutters against external noise is also not to be underestimated. In the cold season, the layer of air between window and shutter has an insulating effect. This can additionally save heating costs.

Roller shutters behave in a similar manner to blinds. They lack the slat control functions. For this reason, we refer to the description of the individual functions in the chapter "Blind / roller shutter".
Express settings for blind / roller shutter --> 112
Group objects
Group objects for express setting for roller shutter

No.	Name	Object function	Length	Behavior	Data Type
31	Master Output 1+2 name of the channel	Movement in manual mode	1 bit	Received	1.008 up/down
32	Master Output $1+2$ name of the channel	Stop in manual mode (roller shutter)	1 bit	Received	1.007 Step
33	Master Output 1+2 name of the channel	Height position in manual mode	1 byte	Received	5.001 Percent $(0 . .100 \%)$
46	Master Output 1+2 name of the channel	Feedback for height	1 byte	Sending	5.001 Percent $(0 \ldots .100 \%)$
51	Master Output 1+2 name of the channel	Feedback for moving	1 bit	Sending	1.010 Start/Stop
52	Master Output $1+2$ name of the channel	Feedback for last direction	1 bit	Sending	1.008 up/down

11.1 Name of the channel

Name of the channel --> 115

```
Master / Ext. 1/2
Output 1+2 / 3+4 / 5+6
/ 7+8
```

-Roller shutter
/ 7+8
-Roller shutter

Express settings for roller shutter

Name of the channel

11.2 Roller shutter control drive time

Drive running time --> 115

Master / Ext. 1/2 Output $1+2 / 3+4 / 5+6$ / $7+8$ -Roller shutter	Express settings for roller shutter	
	Roller shutter control	
	Use same time for up and down	Yes
	Running time: Up/Down (5s...99:59.9 min)	02:00.0
	Pause time before reverting $(2 \ldots 255, \text { unit }=100 \mathrm{~ms})$	5

Master / Ext. 1/2 Output 1+2/3+4/5+6 / 7+8 -Roller shutter	Express settings for roller shutter	
	Roller shutter control	
	Use same time for up and down	No
	5	
	Running time: Up (5s...99:59.9 min)	02:00.0
	Running time: Down (5s...99:59.9 min)	02:00.0
	Pause time before reverting $\text { (2...255, unit = } 100 \mathrm{~ms} \text {) }$	5

11.3 Locking manual mode

Locking manual mode --> 124

Master / Ext. 1/2 Output $1+2 / 3+4 / 5+6$ $/ 7+8$ - Roller shutter	Express settings for roller shutter		
	Locking manual mode	Disabled	Enabled
:---			

Group objects

Group objects for lock of manual mode

11.4 Scenes

Scenes --> 125

Master / Ext. 1/2 Output $1+2 / 3+4 / 5+6$ / 7+8 -Roller shutter	Express settings for roller shutter	
	Scenes	Disabled
	5	Enabled
-Scenes settings	Scene settings	
	Required number of scenes	1 (1-16)
	Overwrite scene values of actuator during download	Disabled
		Enabled
	Time delay for scene processing (0...255, unit $=100 \mathrm{~ms}$)	0
	Scene 1 (1-16)	Disabled
	5	Enabled
	Scene 1 Description	
	Scene 1 Address (0-63) Dependent: Global settings for scenes --> 24	Scene address 0-63
	Scene 1 Address (1-64) Dependent: Global settings for scenes --> 24	Scene address 1-64
	Scene 1 height in \%	0 (0-100)

Following enabling of the scenes, the group object appears.
Group objects

No.	Name	Object function	Length	Behavior	Data Type
43	Master Output $1+2$ name of the channel	Scene	1 byte	Received	18.001 scene control

11.5 Central function for roller shutter

Central function for blind --> 128

The global settings and explanations of the central function can be found in the chapter General settings. (Enabling central functions --> 19)=

Master $/$ Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$	Express settings for roller shutter
- Roller shutter	Central function
	Enabled

Group objects

Group objects of the central function

No.	Name	Object function	Length	Behavior	Data Type
2	Central	Move up/down roller shutter	1 bit	Received	1.008 up/down

11.6 Status response

Status response --> 129

Master $/$ Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$ - Blind	Express settings for roller shutter
	Status of height
	Enabled
	Status of moving

Group objects

Group objects of status response of roller shutter

No.	Name	Object function	Length	Behavior	Data Type
46	Master Output 1+2 name of the channel	Feedback for height	1 byte	Sending	5.001 Percent $(0 \ldots .100 \%)$
51	Master Output 1+2 name of the channel	Feedback for moving	1 bit	Sending	1.010 Start/Stop
52	Master Output 1+2 name of the channel	Feedback for last direction	1 bit	Sending	1.008 up/down

11.7 Activating extended settings for roller shutter

Master / Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$ - Roller shutter	Express settings for roller shutter
	Extended settings for roller shutter

To activate the extended settings for roller shutter, you must enable them here.

12 Extended settings for roller shutter

Extended settings for blind / roller shutter --> 131

$\begin{aligned} & \text { Master / Ext. } 1 / 2 \\ & \text { Output } 1+2 \text { / } 3+4 \text { / } 5+6 \\ & \text { / } 7+8 \\ & \text {-Blind / roller shutter } \end{aligned}$	Express settings for blind / roller shutter
	Extended settings for blind / roller shutter
	Yes
-Extended drive timing	Idle time until upward movement
	Startup delay
	Additional startup time
-Automatic, Locking \& Calibration settings	Priority function
	Logic function
-Safety and alarm settings	Safety function
	Alarm function
	Failure and download behavior

12.1 Extended drive timing

Extended drive timing --> 131

Master / Ext. 1/2 Output 1+2/3+4/5+6 / 7+8 -Blind / roller shutter	Extended drive timing
-Extended drive timing	Idle time until upward movement ($0 . . .255$, unit $=10 \mathrm{~ms}$)
	Startup delay ($0 . . .255$, unit $=$ 10 ms)
	Deceleration delay (0...255, unit $=10 \mathrm{~ms}$)

12.2 Automatic, Locking \& Calibration settings

Automatic, Locking \& Calibration settings --> 133

Automatic mode

Automatic mode --> 133

Master $/$ Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$	Automatic, Locking \& Calibration settings
-Blind / roller shutter	
 Calibration settings	Automatic mode
	Automatic mode

Group objects

Group objects of automatic mode "Roller shutter"

No.	Name	Object function	Length	Behavior	Data Type
36	Master Output 1+2 name of the channel	Movement in au- tomatic mode	1 bit	Received	1.008 up/down
37	Master Output 1+2 name of the channel	Stop in automat- ic mode (roller shutter)	1 bit	Received	1.007 Step
38	Master Output 1+2 name of the channel	Height position in automatic mode	1 byte	Received	5.001 Percent $(0 . .100 \%)$

Master / Ext. $1 / 2$
Output 1+2/3+4/5+6
/ 7+8
-Blind / roller shutter
-Automatic, Locking \&
Calibration settings

Automatic, Locking \& Calibration settings	
Automatic mode	Disabled
Lock of automatic mode	Enabled
Automatic locking	At object value "1"
Status of automatic locking value "0"	Disabled
Enabled	
Behavior on deactivating	No reaction
automatic locking via object	Accept current automatic position

Group objects

Group objects of automatic mode "Lock"

No.	Name	Object function	Length	Behavior	Data Type
40	Master Output 1+2 name of the channel	Lock of automat- ic mode	1 bit	Received	1.003 Enable
48	Master Output $1+2$ name of the channel	Feedback for automatic mode	1 bit	Sending	1.003 Enable

Master / Ext. 1/2 Output 1+2/3+4/5+6 / 7+8 -Blind / roller shutter	Automatic, Locking \& Calibration settings	
-Automatic, Locking \& Calibration settings	Automatic mode	
	Reaction in automatic mode on receipt of a manual object value	Automatic mode remains enabled
		Automatic mode disabled
		Automatic mode temporarily disabled
	Deactivation time for automatic mode	$1 \mathrm{~min}(1 \mathrm{~min}-24 \mathrm{~h})$

Locking function

Locking function --> 136

Master / Ext. 1/2 Output 1+2/3+4/5+6 / 7+8 -Blind / roller shutter -Automatic, Locking \& Calibration settings	Locking function	
	Locking function	Disabled
		Enabled
	Locking	At object value "1"
		At object value "0"
	Status of locking signal	Disabled
		Enabled
	Behavior at start of locking	No reaction
		Up
		Down
		Move to position
	Height position at start of locking in \%	0 (0-100)
	Behavior at end of locking	No reaction
		Up
		Down
		Move to position prior locking
		Accept current automatic position
	Behavior after download	Disabled
		Enabled
		As before download
	Behavior after bus voltage recovery	Disabled
		Enabled
		As before bus voltage failure

Group objects

No.	Name	Object function	Length	Behavior	Data Type
41	Master Output 1+2 name of the channel	Locking	1 bit	Received	1.003 Enable
49	Master Output 1+2 name of the channel	Feedback for drive locking	1 bit	Sending	1.003 Enable

Movement range limits

Movement range limits --> 139

Master / Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$ -Blind / roller shutter Calibration settings	Movement range limits	
	Limit movement range	Disabled
Enabled		
Immediately after bus voltage		
recovery		

Group objects

Group objects of the function "Movement range limits"

No.	Name	Object function	Length	Behavior	Data Type
44	Master Output 1+2 name of the channel	Activate move- ment range limits	1 bit	Received	1.003 Enable
50	Master Output 1+2 name of the channel	Feedback for range limitation	1 bit	Sending	1.003 Enable

Master / Ext. 1/2 Output 1+2/3+4/5+6 / 7+8 -Blind / roller shutter	Movement range limits	
-Automatic, Locking \& Calibration settings	Limit movement position	Limit range at lower position
	Upper limit value in \% (fix)	0
	Lower limit value in \%	100 (0-100)
	Limit movement position	Limit range at upper position
	Upper limit value in \%	100 (0-100)
	Lower limit in \% (fix)	0
	Behavior at the end of movement restriction	No reaction
		Up
		Down
		Move to position prior to movement restriction
		Accept current automatic position

Calibration

Calibration --> 143
The calibrating function is activated centrally on the Global settings for roller shutter and blind tab with the parameter Calibration. Calibration --> 30

Group objects

Group object for calibration

No.	Name	Object function	Length	Behavior	Data Type
17	Central	Calibration	1 bit	Received	1.010 Start/Stop

Master / Ext. 1/2 Output $1+2 / 3+4 / 5+6$ $17+8$ -Blind / roller shutter	Calibration	
-Automatic, Locking \& Calibration settings	Calibration	Disabled
	5	Enabled
	Trigger of calibration	Number of movements
		Value "1" on calibration object
		No. of movements or calibration object
	Delay of calibration via object (0...255, unit = 1 s)	0
	Number of movements until calibration	7 (1-20)
	Reference position	upper
		lower
		upper and lower
	Automatic calibration	upper
		lower
		upper and lower
	Position after calibration via object	Position prior reference movement
		remain in reference position
	1	new position
	Height position after calibration in \%	0 (0-100)

12.3 Safety and alarm settings

Safety function for roller shutter

Safety function for blind --> 147
The global safety function is activated on the Extended settings tab with the parameter Device safety and the global settings are parameterized there. Device safety --> 22

Master / Ext. 1/2 Output 1+2/3+4/5+6 / 7+8 -Blind / roller shutter -Safety and alarm settings	Safety function	
	Safety function	Disabled
5		Enabled
	Behavior at start of safety	No reaction
		Up
		Down
	5	Move to position
	Height position at start of safety in \%	0 (0-100)
	Behavior at end of safety	No reaction
		Up
		Down
		Move to position prior safety
		Accept current automatic position
	Behavior at exceeding cycle time	No reaction
		Up
		Down
	5	Move to position
	Height position on exceeding cycle time in \%	0 (0-100)

Group objects

Group object for central safety

No.	Name	Object function	Length	Behavior	Data Type
23	Central	Safety	1 bit	Received	1.005 alarm

Alarm function

Alarm function --> 149

Group objects

No.	Name	Object function	Length	Behavior	Data Type
42	Master Output 1+2 name of the channel	Alarm	1 bit	Received	1.005 alarm

Weather alarm function

Weather alarm function --> 151
The weather alarms are activated globally on the Extended settings tab with the parameter Global settings for roller shutter and blind, and the global settings are parameterized there. Weather alarm function --> 29

Extended settings	Global settings for roller shutter and blind	
	Weather alarm function	Disabled
		Enabled
	Monitoring time for wind alarm 1	Disabled
		$1 \mathrm{~s} . .12 \mathrm{~h}$
	Monitoring time for wind alarm 2	Disabled
		$1 \mathrm{~s} . .12 \mathrm{~h}$
	Monitoring time for wind alarm 3	Disabled
		$1 \mathrm{~s} . .12 \mathrm{~h}$
	Monitoring time for rain alarm	Disabled
		$1 \mathrm{~s} . .12 \mathrm{~h}$
	Monitoring time for frost alarm	Disabled
		$1 \mathrm{~s} . .12 \mathrm{~h}$
	Priority of weather alarms	Wind alarm->Rain alarm->Frost alarm
		Wind alarm->Frost alarm->Rain alarm
		Rain alarm->Wind alarm->Frost alarm
		Rain alarm->Frost alarm->Wind alarm
		Frost alarm->Rain alarm->Wind alarm
		Frost alarm->Wind alarm->Rain alarm

Group objects

Group object for
weather alarms

No.	Name	Object function	Length	Behavior	Data Type
18	Central	Wind alarm 1	1 bit	Received	1.005 alarm
19	Central	Wind alarm 2	1 bit	Received	1.005 alarm
20	Central	Wind alarm 3	1 bit	Received	1.005 alarm
21	Central	Rain alarm	1 bit	Received	1.005 alarm
22	Central	Frost alarm	1 bit	Received	1.005 alarm

Master $/$ Ext. $1 / 2$ Output $1+2 / 3+4 / 5+6$ $/ 7+8$ -Blind $/$ roller shutter -Safety and alarm settings	Weather alarm function	
	Weather alarm function	Disabled
	Reacts on wind alarm 1	No

Failure and download behavior

Failure and download behavior --> 155

Master / Ext. 1/2 Output 1+2/3+4/5+6 / 7+8 -Blind / roller shutter -Safety and alarm settings	Failure and download behavior	
	Failure and download behavior	Disabled
5		Enabled
	Relay state after bus voltage failure	No reaction
		Stop
	Relay state after bus voltage recovery	Stop
		Up
		Down
		Move to position
		As before bus voltage failure
	Height position at bus voltage recovery in \%	0 (0-100)
	Relay state at end of download	Stop
		Up
		Down
		Move to position
		As before download
	Height position at end of download in \%	0 (0-100)

13 Overview of group objects

Group objects:

No.	Name	Object function	Length	Behavior	Data Type
1	Central	Switch	1 bit	Received	1.001 switch
2	Central	Move up/down roller shutter	1 bit	Received	1.008 up/down
3	Central	Move up/down blind	1 bit	Received	1.008 up/down
6	Central	Switch for Dimmer	1 bit	Received	1.001 switch
8	Central	Dimming time for scenes and central	2 bytes	Received	7.004 Time (100 ms)
11	Extension 1	Collected status	4 bytes	Send/Read	27.001 Bit-combined info On/Off
12	Extension 2	Collected status	4 bytes	Send/Read	27.001 Bit-combined info On/Off
15	Master keypad	Enable button for manual operation	1 bit	Received	1.003 enable
16	Master keypad	Status of manual operation	1 bit	Send/Read	1.001 switch
17	Central	Calibration	1 bit	Received	1.010 Start/Stop
18	Central	Wind alarm 1	1 bit	Received	1.005 alarm
19	Central	Wind alarm 2	1 bit	Received	1.005 alarm
20	Central	Wind alarm 3	1 bit	Received	1.005 alarm
21	Central	Rain alarm	1 bit	Received	1.005 alarm
22	Central	Frost alarm	1 bit	Received	1.005 alarm
23	Central	Safety	1 bit	Received	1.005 alarm
26	Central	Life signal	1 bit	Sending	1.017 trigger
27	Master	Fault - Internal	1 bit	Sending	1.001 switch
28	Master	Fault - External	1 bit	Sending	1.001 switch
31	Master Output 1 name of the channel	Switch	1 bit	Received	1.001 switch
32	Master Output 1 name of the channel	Dimming	4 bit	Received	3.007 Dimming control
33	Master Output 1 name of the channel	Value	1 byte	Received	5.001 Percent (0...100\%)
35	Master Output 1 name of the channel	Lock	1 bit	Received	1.003 Enable
35	Master Output 1 name of the channel	Priority	2 bit	Received	2.001 Prio. switching
36	Master Output 1 name of the channel	Alarm	1 bit	Received	1.005 alarm
37	Master Output 1 name of the channel	Staircase fix	1 bit	Received	1.010 Start/Stop
37	Master Output 1 name of the channel	Staircase variable	2 bytes	Received	7.005 Time (s)
38	Master Output 1 name of the channel	Scene	1 byte	Received	18.001 scene control
39	Master Output 1 name of the channel	Enable dimming time objects	1 bit	Received	1.003 Enable
40	Master Output 1 name of the channel	Time for switch	2 bytes	Received	7.004 Time (100 ms)
41	Master Output 1 name of the channel	Time for dimming	2 bytes	Received	7.004 Time (100 ms)
42	Master Output 1 name of the channel	Time for value	2 bytes	Received	7.004 Time (100 ms)
43	Master Output 1 name of the channel	Time for priority	2 bytes	Received	7.004 Time (100 ms)

No.	Name	Object function	Length	Behavior	Data Type
44	Master Output 1 name of the channel	Time for scenes	2 bytes	Received	7.004 Time (100 ms)
46	Master Output 1 name of the channel	Feedback switch	1 bit	Sending	1.001 switch
47	Master Output 1+2 name of the channel	Feedback value	1 byte	Received	5.001 Percent (0...100\%)
75	Master Output 2 name of the channel	Switch	1 bit	Received	1.001 switch
76	Master Output 2 name of the channel	Dimming	4 bit	Received	3.007 Dimming control
77	Master Output 2 name of the channel	Value	1 byte	Received	5.001 Percent (0...100\%)
79	Master Output 2 name of the channel	Lock	1 bit	Received	1.003 Enable
79	Master Output 2 name of the channel	Priority	2 bit	Received	2.001 Prio. switching
80	Master Output 2 name of the channel	Alarm	1 bit	Received	1.005 alarm
81	Master Output 2 name of the channel	Staircase fix	1 bit	Received	1.010 Start/Stop
81	Master Output 2 name of the channel	Staircase variable	2 bytes	Received	7.005 Time (s)
82	Master Output 2 name of the channel	Scene	1 byte	Received	18.001 scene control
83	Master Output 2 name of the channel	Enable dimming time objects	1 bit	Received	1.003 Enable
84	Master Output 2 name of the channel	Time for switch	2 bytes	Received	7.004 Time (100 ms)
85	Master Output 2 name of the channel	Time for dimming	2 bytes	Received	7.004 Time (100 ms)
86	Master Output 2 name of the channel	Time for value	2 bytes	Received	7.004 Time (100 ms)
87	Master Output 2 name of the channel	Time for priority	2 bytes	Received	7.004 Time (100 ms)
88	Master Output 1 name of the channel	Time for scenes	2 bytes	Received	7.004 Time (100 ms)
90	Master Output 1 name of the channel	Feedback switch	1 bit	Sending	1.001 switch
91	Master Output 1+2 name of the channel	Feedback value	1 byte	Received	5.001 Percent (0...100\%)

his list contains the numbers of all group objects for outputs 1 and 2 on the master and all central objects.
All other outputs (3-8) at the master and all outputs 1-8 of extension 1 and all outputs $1-8$ of extension 2 have the same group objects.

14 Index

A

Activating extended settings for blind $\rightarrow 130$
Activating extended settings for dimming $\rightarrow 55$
Activating extended settings for switching $\rightarrow 87$
Additional start-up time $\rightarrow 133$
Alarm function $\rightarrow 72,107,149$
Always start at 50% brightness (ESL/CFL) $\rightarrow 48$
AND logic operation $\rightarrow 99$
Appropriate ETS version $\rightarrow 6$
Automatic calibration $\rightarrow 144$
Automatic load detection $\rightarrow 49$
Automatic mode $\rightarrow 133$

B

Basic functions for dimming $\rightarrow 36$
Blind $\rightarrow 22$
Blind / roller shutter control $\rightarrow 113$
Blind type $\rightarrow 119$
Blinking $\rightarrow 79$
Blinking interval $\rightarrow 81$

C

Calibration $\rightarrow 34$, 143
Central function dimming $\rightarrow 55$
Central function for blind $\rightarrow 128$
central function for switching output $\rightarrow 86$
collected status response $\rightarrow 31$
Connected nominal voltage $\rightarrow 31$
Contact mode $\rightarrow 82$
Contact mode normally closed $\rightarrow 78$
Contact mode normally opened $\rightarrow 78$

D

Deceleration delay $\rightarrow 132$
Defining channel functions $\rightarrow 20$
Depictions in this document $\rightarrow 4$
Device health $\rightarrow 26$
Device protection and Cyber Security $\rightarrow 17$
Device safety $\rightarrow 25$
Dimming $\rightarrow 22$
Dimming curve $\rightarrow 41$
Dimming operation mode $\rightarrow 48$
Dimming range $\rightarrow 47$
Dimming Switch Blind 3300/1.0 application $\rightarrow 12$
Dimming time $\rightarrow 56$
Downwards closed / upwards closed $\rightarrow 121$
Downwards closed / upwards horizontal $\rightarrow 119$
Downwards tilted / upwards closed $\rightarrow 122$
Downwards tilted / upwards horizontal $\rightarrow 120$
Drive running time $\rightarrow 115$

ETS operation $\rightarrow 5$
Express settings $\rightarrow 5$
Express settings for blind / roller shutter $\rightarrow 112$
Express settings for dimming $\rightarrow 36$
Express settings for roller shutter $\rightarrow 158$
Express settings for switching $\rightarrow 77$
Extended drive timing $\rightarrow 131$
Extended settings for blind / roller shutter $\rightarrow 131$
Extended settings for dimming $\rightarrow 56$
Extended settings for roller shutter $\rightarrow 162$
Extended settings for switching $\rightarrow 88$

F

Failure and download behavior $\rightarrow 74,109,155$
Failure indicator $\rightarrow 26$
feedback $\rightarrow 27$
Functions with higher priority $\rightarrow 102$

G

General settings $\rightarrow 17$
Global settings for dimming $\rightarrow 30$
Global settings for roller shutter and blind $\rightarrow 33$
Global settings for switching $\rightarrow 31$
Group object for calibration $\rightarrow 35,143,167$
Group object for central safety $\rightarrow 25,71,106,147,168$
Group object for collected status $\rightarrow 32$
Group object for dimming time for scenes and central function $\rightarrow 31$
Group object for enable button for manual operation $\rightarrow 29$
Group object for failure indicator $\rightarrow 26$
Group object for live signal $\rightarrow 26$
Group object for scene $\rightarrow 52,84,125,160$
Group object for status of manual operation $\rightarrow 30$
Group object for weather alarms $\rightarrow 34,152,170$
Group objects $\rightarrow 174$
Group objects for express setting for blind $\rightarrow 115$
Group objects for express setting for roller shutter $\rightarrow 158$
Group objects for lock of manual mode $\rightarrow 124,159$
Group objects for "Switching" express setting $\rightarrow 78$
Group objects of automatic mode "Blind" $\rightarrow 134$
Group objects of automatic mode "Lock" \rightarrow 135, 164
Group objects of automatic mode "Roller shutter" $\rightarrow 163$
Group objects of locking function $\rightarrow 69,104,137,165$
Group objects of logic function $\rightarrow 98$
Group objects of priority function $\rightarrow 66,102$
Group objects of staircase lighting time $\rightarrow 57,58,89$
Group objects of status response of automatic mode $\rightarrow 130$
Group objects of status response of blind $\rightarrow 129$
Group objects of status response of roller shutter $\rightarrow 161$
Group objects of the alarm function $\rightarrow 72,107,149,169$
Group objects of the central function $\rightarrow 24,128,161$
Group objects of the express setting "Dimming" $\rightarrow 36$
Group objects of the function "Movement range limits" \rightarrow 140, 166

H

Halogen lamps $\rightarrow 42$

Enable central functions $\rightarrow 23$
Energy saving $\rightarrow 25$

I

Idle time $\rightarrow 132$
Incandescent lamps $\rightarrow 42$

L

LED lamps $\rightarrow 42$
live signal $\rightarrow 26$
Load detection $\rightarrow 48$
Locking function $\rightarrow 69,104,136$
Locking manual mode $\rightarrow 124$
Logic function $\rightarrow 98$

M

Manual operation settings $\rightarrow 28$
Maximum brightness $\rightarrow 48$
Minimum brightness $\rightarrow 47$
Movement range limits $\rightarrow 139$

\mathbf{N}

Name of the channel $\rightarrow 77,115$
Name of the channel dimming $\rightarrow 40$
nominal voltage $\rightarrow 31$
Normally closed $\rightarrow 83$
Normally opened $\rightarrow 82$

0

Off-delay $\rightarrow 64,95$
On-delay $\rightarrow 63$, 94
On-delay and off delay $\rightarrow 94$
On-delay and off-delay $\rightarrow 63$
OR logic operation $\rightarrow 100$
Overview of application functions $\rightarrow 13$
Overview of group objects $\rightarrow 174$

P

pause on reverse $\rightarrow 117$
Pause time before reverting $\rightarrow 117$
PIN Code for Firmware Update $\rightarrow 35$
Prewarnings $\rightarrow 92$
Priority $\rightarrow 54,72,73,86,107,108,128,148,151$
priority control $\rightarrow 66,102$
Priority function $\rightarrow 66,102$
Priority of functions for dimming $\rightarrow 31$
Priority of functions for roller shutter and blind $\rightarrow 34$
Priority of functions for switching $\rightarrow 32$
Priority of weather alarms $\rightarrow 33,152$

R

Reference position $\rightarrow 144$
Relative dimming (4 bits) $\rightarrow 38$
Roller shutter $\rightarrow 22$
Roller shutters $\rightarrow 158$

S

Safety and alarm settings $\rightarrow 71,106$
Safety function dimming $\rightarrow 71$

Safety function for blind $\rightarrow 147$
Safety function priority $\rightarrow 25$
Safety function switching $\rightarrow 106$
Same dimming time $\rightarrow 30$
scene address $\rightarrow 53,85,127$
scenes $\rightarrow 27$
Scenes $\rightarrow 51,84,125,160$
scene values $\rightarrow 53$, 85, 127
Selection of the SpaceLogic KNX extensions $\rightarrow 18$
Setting the blind type $\rightarrow 119$
Slat control $\rightarrow 117$
Slat position after movement $\rightarrow 123$
Slat rotation time $\rightarrow 117$
Special dimming mode (RL-LED) $\rightarrow 50$
Staircase lighting time fix $\rightarrow 58,89$
Staircase lighting time function $\rightarrow 58,88$
Staircase lighting time variable $\rightarrow 59,89$
staircase timer $\rightarrow 58,88$
Startup delay $\rightarrow 132$
Status of height $\rightarrow 129$
Status of moving $\rightarrow 129$
Status of slat $\rightarrow 129$
status response $\rightarrow 87$
Status response $\rightarrow 40,78,79,82,83,129$
Status response for switching $\rightarrow 38$
Switching \rightarrow 22, 77
Switching (1 bit) $\rightarrow 37$
Switching mode $\rightarrow 77$
Switch object behavior $\rightarrow 41$

T

Time delay for scene $\rightarrow 85$
Time settings $\rightarrow 58$, 88

U

User-defined dimming curve $\rightarrow 43$

V

Value dimming (1 byte) $\rightarrow 39$

W

Weather alarm function $\rightarrow 33$, 151

X

XOR logic operation $\rightarrow 101$

Schneider Electric Industries SAS If you have any technical questions, please contact the Customer Care Center in your country. schneider-electric.com/contact
© 2020 Schneider Electric, all rights reserved

[^0]: Manual switching off = Not active ("0" telegram)

[^1]: Movement range limits --> 139

