Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3067743-$ SiTech+ Bend STB $87,5^{\circ} 90$
Unit:	1 piece
Manufacturer:	Wavin -IT - SM Maddalena

Wavin SiTech+ is a waste water system made of mineral- reinforced polypropylene (PP), which offers increased durability, but more importantly is quiet and easy to install.
LCA standard: Standard database: Externally verified: Issue date: End of validity:
Verifier:

EN15804+A2 (2019)

Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
24-11-2022
24-11-2027
Martijn van Hövell - SGS Search

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - IT - SM Maddalena (2020). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - IT - SM Maddalena. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - IT - SM Maddalena.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$5.62 \mathrm{E}-1$	$1.08 \mathrm{E}-2$	4.05E-2	$6.14 \mathrm{E}-1$	$7.34 \mathrm{E}-3$	$3.21 \mathrm{E}-1$	3.54E-3	-3.43E-1	$6.03 \mathrm{E}-1$
GWP-f		kg CO2 eq	$6.19 \mathrm{E}-1$	$1.08 \mathrm{E}-2$	3.47E-2	6.64E-1	$7.34 \mathrm{E}-3$	$2.50 \mathrm{E}-1$	3.54E-3	-3.70E-1	$5.55 \mathrm{E}-1$
GWP-b		kg CO2 eq	-5.67E-2	$6.58 \mathrm{E}-6$	$2.93 \mathrm{E}-3$	-5.38E-2	$4.45 \mathrm{E}-6$	7.09E-2	3.11E-6	$2.71 \mathrm{E}-2$	$4.42 \mathrm{E}-2$
GWP-Iuluc		kg CO2 eq	3.57E-4	3.83E-6	$2.93 \mathrm{E}-3$	3.29E-3	$2.60 \mathrm{E}-6$	4.13E-5	5.97E-8	-2.90E-4	3.04E-3
ODP		kg CFC11 eq	$2.34 \mathrm{E}-8$	$2.50 \mathrm{E}-9$	3.48E-9	$2.93 \mathrm{E}-8$	$1.69 \mathrm{E}-9$	5.76E-9	$8.90 \mathrm{E}-11$	-1.71E-8	$1.97 \mathrm{E}-8$
AP		mol $\mathrm{H}+\mathrm{eq}$	$2.34 \mathrm{E}-3$	$6.17 \mathrm{E}-5$	$1.40 \mathrm{E}-4$	$2.54 \mathrm{E}-3$	4.18E-5	$2.41 \mathrm{E}-4$	$2.12 \mathrm{E}-6$	-1.13E-3	$1.69 \mathrm{E}-3$
EP-fw		kg Peq	$1.13 \mathrm{E}-5$	$8.91 \mathrm{E}-8$	5.39E-7	$1.20 \mathrm{E}-5$	6.04E-8	$1.20 \mathrm{E}-6$	$2.75 \mathrm{E}-9$	-6.51E-6	6.71E-6
EP-m		kg Neq	4.17E-4	2.21E-5	2.36E-5	$4.63 \mathrm{E}-4$	1.50E-5	7.20E-5	$1.53 \mathrm{E}-6$	-2.13E-4	$3.38 \mathrm{E}-4$
EP-T		$\mathrm{mol} \mathrm{Neq}^{\text {d }}$	$4.63 \mathrm{E}-3$	$2.43 \mathrm{E}-4$	$2.65 \mathrm{E}-4$	5.13E-3	$1.65 \mathrm{E}-4$	$7.92 \mathrm{E}-4$	8.62E-6	-2.39E-3	3.71E-3
POCP		kg NMVOC eq	2.03E-3	6.95E-5	8.25E-5	$2.18 \mathrm{E}-3$	4.71E-5	$2.48 \mathrm{E}-4$	3.23E-6	-1.00E-3	1.47E-3
ADP-mm		kg Sb eq	2.36E-5	2.80E-7	$8.44 \mathrm{E}-7$	$2.47 \mathrm{E}-5$	1.90E-7	9.41E-7	$2.13 \mathrm{E}-9$	-3.04E-6	$2.28 \mathrm{E}-5$
ADP-f		MJ	$2.12 \mathrm{E}+1$	$1.66 \mathrm{E}-1$	$4.56 \mathrm{E}-1$	$2.19 \mathrm{E}+1$	$1.13 \mathrm{E}-1$	$7.33 \mathrm{E}-1$	$6.49 \mathrm{E}-3$	-1.11E+1	$1.16 \mathrm{E}+1$
WDP		m3 depriv.	$4.19 \mathrm{E}-1$	5.10E-4	1.61E-1	$5.81 \mathrm{E}-1$	3.46E-4	$1.44 \mathrm{E}-2$	$2.97 \mathrm{E}-5$	-2.25E-1	3.71E-1
PM		disease inc.	2.29E-8	$9.78 \mathrm{E}-10$	$1.40 \mathrm{E}-9$	2.53E-8	$6.62 \mathrm{E}-10$	3.88E-9	$4.46 \mathrm{E}-11$	-1.16E-8	$1.83 \mathrm{E}-8$
IR		kBq U-235 eq	$1.50 \mathrm{E}-2$	$7.27 \mathrm{E}-4$	$4.26 \mathrm{E}-4$	$1.62 \mathrm{E}-2$	$4.92 \mathrm{E}-4$	$2.25 \mathrm{E}-3$	3.02E-5	-7.16E-3	$1.18 \mathrm{E}-2$
ETP-fw		CTUe	7.30E+0	1.35E-1	7.20E-1	$8.16 \mathrm{E}+0$	$9.14 \mathrm{E}-2$	$9.07 \mathrm{E}-1$	5.88E-3	$-3.69 \mathrm{E}+0$	$5.47 \mathrm{E}+0$
HTP-c		cTUn	$1.82 \mathrm{E}-10$	4.80E-12	$3.84 \mathrm{E}-11$	2.25E-10	$3.25 \mathrm{E}-12$	$9.84 \mathrm{E}-11$	$1.57 \mathrm{E}-13$	-9.43E-11	$2.32 \mathrm{E}-10$
HTP-nc		ctun	$4.48 \mathrm{E}-9$	1.61E-10	7.96E-10	$5.44 \mathrm{E}-9$	$1.09 \mathrm{E}-10$	$1.25 \mathrm{E}-9$	3.59E-12	-2.32E-9	$4.47 \mathrm{E}-9$
SQP		Pt	$6.95 \mathrm{E}+0$	1.42E-1	8.31E-2	7.18E+0	9.63E-2	$5.77 \mathrm{E}-1$	1.67E-2	-9.48E+0	$-1.61 \mathrm{E}+0$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	1.27E+0	$2.39 \mathrm{E}-3$	$1.58 \mathrm{E}+0$	$2.85 \mathrm{E}+0$	$1.62 \mathrm{E}-3$	$3.56 \mathrm{E}-2$	$2.56 \mathrm{E}-4$	-1.67E+0	1.22E+0
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	1.27E+0	$2.39 \mathrm{E}-3$	$1.58 \mathrm{E}+0$	$2.85 \mathrm{E}+0$	$1.62 \mathrm{E}-3$	$3.56 \mathrm{E}-2$	$2.56 \mathrm{E}-4$	-1.67E+0	$1.22 \mathrm{E}+0$
PENRE		MJ	$2.28 \mathrm{E}+1$	1.76E-1	$4.98 \mathrm{E}-1$	$2.34 \mathrm{E}+1$	1.20E-1	7.81E-1	6.89E-3	-1.20E+1	1.24E+1
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$2.28 \mathrm{E}+1$	1.76E-1	$4.98 \mathrm{E}-1$	$2.34 \mathrm{E}+1$	1.20E-1	7.81E-1	6.89E-3	-1.20E+1	1.24E+1
PET		MJ	2.40E+1	$1.79 \mathrm{E}-1$	$2.08 \mathrm{E}+0$	$2.63 \mathrm{E}+1$	1.21E-1	8.17E-1	$7.15 \mathrm{E}-3$	-1.37E+1	$1.36 \mathrm{E}+1$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	$6.76 \mathrm{E}-3$	$1.88 \mathrm{E}-5$	$3.83 \mathrm{E}-3$	$1.06 \mathrm{E}-2$	$1.27 \mathrm{E}-5$	4.66E-4	8.03E-6	-3.86E-3	7.23E-3

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	3.83E-6	4.25E-7	4.43E-7	$4.70 \mathrm{E}-6$	2.88E-7	$1.24 \mathrm{E}-6$	7.80E-9	-3.41E-6	2.83E-6
NHWD	kg	3.19E-2	1.03E-2	$4.32 \mathrm{E}-3$	$4.65 \mathrm{E}-2$	$6.98 \mathrm{E}-3$	$3.65 \mathrm{E}-2$	2.86E-2	-1.27E-2	1.06E-1
RWD	kg	1.51E-5	$1.13 \mathrm{E}-6$	4.73E-7	1.67E-5	7.66E-7	2.87E-6	$4.25 \mathrm{E}-8$	-6.73E-6	1.36E-5
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

