Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3067736-$ SiTech+ Bend STB $67,5^{\circ} 90$
Unit:	1 piece
Manufacturer:	Wavin -IT - SM Maddalena

Wavin SiTech+ is a waste water system made of mineral- reinforced polypropylene (PP), which offers increased durability, but more importantly is quiet and easy to install.
LCA standard:
Externally verified:
Issue date:
End of validity:

Verifier:

EN15804+A2 (2019)

Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
24-11-2022
24-11-2027
Martijn van Hövell - SGS Search

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - IT - SM Maddalena (2020). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - IT - SM Maddalena. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - IT - SM Maddalena.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	5.16E-1	$1.03 \mathrm{E}-2$	3.72E-2	5.64E-1	$6.74 \mathrm{E}-3$	3.04E-1	$3.25 \mathrm{E}-3$	-3.15E-1	$5.62 \mathrm{E}-1$
GWP-f		kg CO2 eq	5.73E-1	$1.03 \mathrm{E}-2$	3.18E-2	6.15E-1	$6.73 \mathrm{E}-3$	2.33E-1	3.25E-3	-3.42E-1	5.16E-1
GWP-b		kg CO2 eq	-5.69E-2	6.23E-6	$2.69 \mathrm{E}-3$	-5.42E-2	$4.09 \mathrm{E}-6$	7.09E-2	$2.86 \mathrm{E}-6$	$2.72 \mathrm{E}-2$	4.39E-2
GWP-Iuluc		kg CO2 eq	$3.46 \mathrm{E}-4$	3.63E-6	$2.69 \mathrm{E}-3$	3.04E-3	$2.38 \mathrm{E}-6$	3.79E-5	5.49E-8	-2.84E-4	$2.79 \mathrm{E}-3$
ODP		kg CFC11 eq	$2.26 \mathrm{E}-8$	$2.36 \mathrm{E}-9$	3.20E-9	$2.82 \mathrm{E}-8$	$1.55 \mathrm{E}-9$	5.32E-9	8.18E-11	-1.61E-8	$1.90 \mathrm{E}-8$
AP		mol $\mathrm{H}+\mathrm{eq}$	$2.18 \mathrm{E}-3$	5.85E-5	1.28E-4	$2.36 \mathrm{E}-3$	3.83E-5	2.23E-4	1.95E-6	-1.05E-3	$1.57 \mathrm{E}-3$
EP-fw		kg P eq	1.07E-5	$8.44 \mathrm{E}-8$	$4.95 \mathrm{E}-7$	$1.13 \mathrm{E}-5$	$5.54 \mathrm{E}-8$	$1.10 \mathrm{E}-6$	$2.53 \mathrm{E}-9$	-6.21E-6	6.21E-6
EP-m		kg Neq	3.91E-4	2.09E-5	2.17E-5	4.33E-4	$1.37 \mathrm{E}-5$	$6.66 \mathrm{E}-5$	1.42E-6	-1.99E-4	3.15E-4
EP-T		mol eq	4.32E-3	2.30E-4	$2.44 \mathrm{E}-4$	4.80E-3	1.51E-4	7.33E-4	7.93E-6	-2.23E-3	3.45E-3
POCP		kg NMVOC eq	1.89E-3	6.59E-5	7.57E-5	$2.03 \mathrm{E}-3$	4.32E-5	2.29E-4	$2.97 \mathrm{E}-6$	-9.34E-4	$1.37 \mathrm{E}-3$
ADP-mm		kg Sb eq	2.30E-5	$2.65 \mathrm{E}-7$	7.75E-7	2.40E-5	1.74E-7	8.68E-7	1.96E-9	-2.86E-6	2.22E-5
ADP-f		MJ	$1.96 \mathrm{E}+1$	$1.58 \mathrm{E}-1$	$4.19 \mathrm{E}-1$	$2.01 \mathrm{E}+1$	$1.03 \mathrm{E}-1$	$6.74 \mathrm{E}-1$	5.97E-3	-1.02E+1	$1.07 \mathrm{E}+1$
WDP		m3 depriv.	3.87E-1	4.83E-4	1.48E-1	$5.36 \mathrm{E}-1$	3.17E-4	1.32E-2	2.74E-5	-2.09E-1	$3.40 \mathrm{E}-1$
PM		disease inc.	$2.15 \mathrm{E}-8$	$9.26 \mathrm{E}-10$	1.29E-9	$2.37 \mathrm{E}-8$	$6.08 \mathrm{E}-10$	3.58E-9	4.10E-11	-1.09E-8	$1.70 \mathrm{E}-8$
IR		kBq U-235 eq	1.42E-2	6.88E-4	3.91E-4	$1.53 \mathrm{E}-2$	$4.52 \mathrm{E}-4$	2.07E-3	$2.78 \mathrm{E}-5$	-6.75E-3	$1.11 \mathrm{E}-2$
ETP-fw		ctue	$7.08 \mathrm{E}+0$	$1.28 \mathrm{E}-1$	$6.61 \mathrm{E}-1$	7.87E+0	$8.39 \mathrm{E}-2$	8.40E-1	$5.44 \mathrm{E}-3$	$-3.58 \mathrm{E}+0$	5.21E+0
HTP-c		CTUn	$1.72 \mathrm{E}-10$	4.55E-12	3.53E-11	2.11E-10	2.99E-12	9.05E-11	$1.45 \mathrm{E}-13$	-8.96E-11	2.15E-10
HTP-nc		ctun	$4.20 \mathrm{E}-9$	1.52E-10	7.31E-10	5.08E-9	1.00E-10	$1.15 \mathrm{E}-9$	3.31E-12	-2.19E-9	$4.14 \mathrm{E}-9$
SQP		Pt	$6.90 \mathrm{E}+0$	$1.35 \mathrm{E}-1$	7.63E-2	7.11E+0	$8.84 \mathrm{E}-2$	5.30E-1	1.53E-2	-9.45E+0	-1.71E+0
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$1.24 \mathrm{E}+0$	$2.26 \mathrm{E}-3$	$1.45 \mathrm{E}+0$	2.70E+0	$1.48 \mathrm{E}-3$	3.27E-2	$2.35 \mathrm{E}-4$	-1.66E+0	$1.08 \mathrm{E}+0$
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$1.24 \mathrm{E}+0$	$2.26 \mathrm{E}-3$	$1.45 \mathrm{E}+0$	2.70E+0	$1.48 \mathrm{E}-3$	3.27E-2	$2.35 \mathrm{E}-4$	-1.66E+0	$1.08 \mathrm{E}+0$
PENRE		MJ	$2.10 \mathrm{E}+1$	1.67E-1	$4.57 \mathrm{E}-1$	$2.16 \mathrm{E}+1$	1.10E-1	$7.18 \mathrm{E}-1$	$6.34 \mathrm{E}-3$	-1.10E+1	$1.14 \mathrm{E}+1$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	2.10E+1	1.67E-1	$4.57 \mathrm{E}-1$	$2.16 \mathrm{E}+1$	1.10E-1	7.18E-1	$6.34 \mathrm{E}-3$	-1.10E+1	$1.14 \mathrm{E}+1$
PET		MJ	2.22E+1	$1.69 \mathrm{E}-1$	1.91E+0	$2.43 \mathrm{E}+1$	1.11E-1	7.51E-1	6.57E-3	-1.27E+1	$1.25 \mathrm{E}+1$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	$6.28 \mathrm{E}-3$	$1.78 \mathrm{E}-5$	3.52E-3	9.82E-3	1.17E-5	4.32E-4	7.38E-6	-3.63E-3	$6.64 \mathrm{E}-3$

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	3.64E-6	$4.03 \mathrm{E}-7$	4.07E-7	$4.45 \mathrm{E}-6$	$2.64 \mathrm{E}-7$	1.15E-6	7.17E-9	-3.20E-6	2.67E-6
NHWD	kg	3.02E-2	$9.76 \mathrm{E}-3$	3.97E-3	$4.39 \mathrm{E}-2$	$6.40 \mathrm{E}-3$	3.36E-2	2.63E-2	-1.20E-2	9.82E-2
RWD	kg	1.43E-5	1.07E-6	$4.35 \mathrm{E}-7$	1.59E-5	7.03E-7	$2.65 \mathrm{E}-6$	3.91E-8	-6.36E-6	1.29E-5
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

