Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	3067791 - SiTech+ Coupler STU 50
Unit:	1piece
Manufacturer:	Wavin - IT - SM Maddalena

Wavin SiTech+ is a waste water system made of mineral- reinforced polypropylene (PP), which offers increased durability, but more importantly is quiet and easy to install.
LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:
Verifier. Martijn van Hövell - SGS Search

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - IT - SM Maddalena (2020). ($\square=$ module declared, MND = module not declared).

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - IT - SM Maddalena. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - IT - SM Maddalena.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$1.53 \mathrm{E}-1$	$4.32 \mathrm{E}-3$	8.40E-3	$1.65 \mathrm{E}-1$	$1.69 \mathrm{E}-3$	$1.03 \mathrm{E}-1$	$8.68 \mathrm{E}-4$	-8.13E-2	$1.89 \mathrm{E}-1$
GWP-f		kg CO2 eq	1.67E-1	$4.31 \mathrm{E}-3$	7.19E-3	$1.79 \mathrm{E}-1$	$1.69 \mathrm{E}-3$	$8.24 \mathrm{E}-2$	$8.68 \mathrm{E}-4$	-9.38E-2	$1.70 \mathrm{E}-1$
GWP-b		kg CO2 eq	-1.47E-2	$2.62 \mathrm{E}-6$	$6.07 \mathrm{E}-4$	-1.41E-2	$1.03 \mathrm{E}-6$	$2.03 \mathrm{E}-2$	$7.78 \mathrm{E}-7$	1.26E-2	$1.88 \mathrm{E}-2$
GWP-luluc		kg CO2 eq	$1.39 \mathrm{E}-4$	$1.53 \mathrm{E}-6$	6.07E-4	7.47E-4	5.98E-7	$9.11 \mathrm{E}-6$	$1.50 \mathrm{E}-8$	-1.11E-4	$6.46 \mathrm{E}-4$
ODP		kg CFC11 eq	$1.30 \mathrm{E}-8$	9.94E-10	7.22E-10	$1.47 \mathrm{E}-8$	3.89E-10	$1.39 \mathrm{E}-9$	2.21E-11	-5.53E-9	$1.10 \mathrm{E}-8$
AP		mol $\mathrm{H}+\mathrm{eq}$	$7.01 \mathrm{E}-4$	2.46E-5	2.90E-5	$7.55 \mathrm{E}-4$	$9.62 \mathrm{E}-6$	5.90E-5	5.30E-7	-2.85E-4	$5.39 \mathrm{E}-4$
EP-fw		kg P eq	$3.85 \mathrm{E}-6$	$3.55 \mathrm{E}-8$	1.12E-7	4.00E-6	$1.39 \mathrm{E}-8$	2.70E-7	6.90E-10	-2.03E-6	$2.25 \mathrm{E}-6$
EP-m		kg Neq	$1.27 \mathrm{E}-4$	$8.79 \mathrm{E}-6$	4.90E-6	1.41E-4	3.44E-6	1.82E-5	4.82E-7	-5.62E-5	$1.07 \mathrm{E}-4$
EP-T		mol Neq	$1.40 \mathrm{E}-3$	9.69E-5	5.51E-5	$1.55 \mathrm{E}-3$	3.79E-5	$2.00 \mathrm{E}-4$	$2.15 \mathrm{E}-6$	-6.32E-4	$1.16 \mathrm{E}-3$
POCP		kg NMVOC eq	5.92E-4	$2.77 \mathrm{E}-5$	1.71E-5	6.37E-4	1.08E-5	6.11E-5	8.01E-7	-2.48E-4	4.61E-4
ADP-mm		kg Sb eq	$1.66 \mathrm{E}-5$	$1.12 \mathrm{E}-7$	$1.75 \mathrm{E}-7$	1.68E-5	$4.37 \mathrm{E}-8$	2.19E-7	5.30E-10	-1.07E-6	$1.60 \mathrm{E}-5$
ADP-f		MJ	5.41E+0	6.62E-2	$9.46 \mathrm{E}-2$	5.57E+0	$2.59 \mathrm{E}-2$	1.67E-1	1.62E-3	-2.62E+0	3.15E+0
WDP		m3 depriv.	1.10E-1	2.03E-4	3.35E-2	$1.43 \mathrm{E}-1$	7.96E-5	3.46E-3	7.41E-6	-5.82E-2	$8.86 \mathrm{E}-2$
PM		disease inc.	7.50E-9	3.89E-10	2.90E-10	8.18E-9	1.52E-10	8.98E-10	1.11E-11	-3.21E-9	6.02E-9
IR		kBq U-235 eq	$6.10 \mathrm{E}-3$	$2.89 \mathrm{E}-4$	8.83E-5	6.48E-3	1.13E-4	$5.19 \mathrm{E}-4$	7.56E-6	-2.09E-3	5.03E-3
ETP-fw		ctue	$3.05 \mathrm{E}+0$	$5.37 \mathrm{E}-2$	$1.49 \mathrm{E}-1$	$3.26 \mathrm{E}+0$	2.11E-2	$2.53 \mathrm{E}-1$	$1.76 \mathrm{E}-3$	-1.34E+0	$2.19 \mathrm{E}+0$
HTP-c		ctun	$5.84 \mathrm{E}-11$	1.91E-12	7.96E-12	$6.83 \mathrm{E}-11$	7.49E-13	2.22E-11	3.97E-14	-2.59E-11	6.54E-11
HTP-nc		ctun	$1.43 \mathrm{E}-9$	$6.41 \mathrm{E}-11$	$1.65 \mathrm{E}-10$	$1.66 \mathrm{E}-9$	$2.51 \mathrm{E}-11$	$2.96 \mathrm{E}-10$	9.68E-13	-6.53E-10	$1.33 \mathrm{E}-9$
SQP		Pt	$2.11 \mathrm{E}+0$	$5.66 \mathrm{E}-2$	1.72E-2	$2.18 \mathrm{E}+0$	2.22E-2	1.28E-1	$4.14 \mathrm{E}-3$	-3.40E+0	-1.06E+0
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	3.86E-1	$9.50 \mathrm{E}-4$	3.27E-1	7.14E-1	3.72E-4	7.98E-3	6.53E-5	-6.01E-1	1.22E-1
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$3.86 \mathrm{E}-1$	$9.50 \mathrm{E}-4$	3.27E-1	$7.14 \mathrm{E}-1$	3.72E-4	$7.98 \mathrm{E}-3$	6.53E-5	-6.01E-1	1.22E-1
PENRE		MJ	5.80E+0	7.03E-2	1.03E-1	$5.98 \mathrm{E}+0$	$2.75 \mathrm{E}-2$	$1.78 \mathrm{E}-1$	1.71E-3	-2.83E+0	$3.36 \mathrm{E}+0$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	5.80E+0	7.03E-2	$1.03 \mathrm{E}-1$	$5.98 \mathrm{E}+0$	$2.75 \mathrm{E}-2$	$1.78 \mathrm{E}-1$	$1.71 \mathrm{E}-3$	-2.83E+0	$3.36 \mathrm{E}+0$
PET		MJ	$6.19 \mathrm{E}+0$	7.12E-2	4.31E-1	$6.69 \mathrm{E}+0$	$2.79 \mathrm{E}-2$	$1.86 \mathrm{E}-1$	$1.78 \mathrm{E}-3$	-3.43E+0	$3.48 \mathrm{E}+0$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	2.00E-3	7.49E-6	7.95E-4	2.81E-3	$2.93 \mathrm{E}-6$	$1.39 \mathrm{E}-4$	$2.00 \mathrm{E}-6$	-1.10E-3	$1.85 \mathrm{E}-3$

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	$1.45 \mathrm{E}-6$	1.69E-7	$9.20 \mathrm{E}-8$	$1.71 \mathrm{E}-6$	6.63E-8	3.06E-7	1.94E-9	-1.05E-6	$1.03 \mathrm{E}-6$
NHWD	kg	$1.09 \mathrm{E}-2$	4.10E-3	8.96E-4	$1.59 \mathrm{E}-2$	1.61E-3	$8.72 \mathrm{E}-3$	7.11E-3	-3.45E-3	$2.99 \mathrm{E}-2$
RWD	kg	7.03E-6	4.50E-7	9.82E-8	7.57E-6	$1.76 \mathrm{E}-7$	6.67E-7	$1.06 \mathrm{E}-8$	-2.03E-6	6.39E-6
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31203035777

