## Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

## Ecochain

| Product: | $3067734-$ SiTech+ Bend STB $67,5^{\circ} 50$ |
| :--- | :--- |
| Unit: | 1 piece |
| Manufacturer: | Wavin - IT - SM Maddalena |

Wavin SiTech+ is a waste water system made of mineral- reinforced polypropylene (PP), which offers increased durability, but more importantly is quiet and easy to install.
LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:
Verifier. Martijn van Hövell - SGS Search

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - IT - SM Maddalena (2020). ( $\square=$ module declared, MND = module not declared).

| A1 | A2 | A3 | A4 | A5 | B1 | B2 | B3 | B4 | B5 | B6 | B7 | C1 | C2 | C3 | C4 | D |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V | V | $\square$ | MND | V | V | $\square$ | ■ |
| Product |  |  |  |  | Use stage |  |  |  |  |  |  | End-of-Lif |  |  |  |  |
| A1 Raw material supply A2 Transport A3 Manufacturing Construction process stage |  |  |  |  | B1 Use B2 Maintenance B3 Repair B4 Replacement B5 Refurbishment B6 Operational energy use B7 Operational water use |  |  |  |  |  |  | C1 De-construction demolition C2 Transport C3 Waste processing C4 Disposal |  |  |  |  |
| A4 Transport gate to site |  |  |  |  |  |  |  |  |  |  |  | Benefits and loads beyond the system boundaries |  |  |  |  |

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters






Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - IT - SM Maddalena. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - IT - SM Maddalena.

## Results

|  | Environmental impact | Unit | A1 | A2 | A3 | A1-A3 | C2 | C3 | C4 | D | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GWP-total |  | kg CO2 eq | $1.38 \mathrm{E}-1$ | 3.48E-3 | $9.91 \mathrm{E}-3$ | 1.52E-1 | $1.83 \mathrm{E}-3$ | $1.05 \mathrm{E}-1$ | $8.99 \mathrm{E}-4$ | -8.69E-2 | $1.72 \mathrm{E}-1$ |
| GWP-f |  | kg CO2 eq | 1.67E-1 | 3.48E-3 | 8.47E-3 | $1.79 \mathrm{E}-1$ | 1.83E-3 | 7.04E-2 | $8.99 \mathrm{E}-4$ | -9.85E-2 | $1.54 \mathrm{E}-1$ |
| GWP-b |  | kg CO2 eq | -2.90E-2 | $2.11 \mathrm{E}-6$ | 7.16E-4 | -2.83E-2 | 1.11E-6 | 3.46E-2 | 7.95E-7 | $1.17 \mathrm{E}-2$ | 1.81E-2 |
| GWP-Iuluc |  | kg CO2 eq | 1.31E-4 | $1.23 \mathrm{E}-6$ | 7.16E-4 | $8.48 \mathrm{E}-4$ | $6.48 \mathrm{E}-7$ | $1.03 \mathrm{E}-5$ | $1.53 \mathrm{E}-8$ | -1.14E-4 | $7.45 \mathrm{E}-4$ |
| ODP |  | kg CFC11 eq | $8.80 \mathrm{E}-9$ | 8.02E-10 | 8.50E-10 | $1.05 \mathrm{E}-8$ | 4.22E-10 | $1.51 \mathrm{E}-9$ | $2.27 \mathrm{E}-11$ | -5.21E-9 | 7.21E-9 |
| AP |  | mol $\mathrm{H}+\mathrm{eq}$ | $6.63 \mathrm{E}-4$ | $1.98 \mathrm{E}-5$ | 3.42E-5 | 7.17E-4 | $1.04 \mathrm{E}-5$ | 6.34E-5 | 5.43E-7 | -3.17E-4 | $4.74 \mathrm{E}-4$ |
| EP-fw |  | kg Peq | 3.50E-6 | $2.86 \mathrm{E}-8$ | 1.32E-7 | 3.66E-6 | $1.51 \mathrm{E}-8$ | 3.02E-7 | 7.04E-10 | -2.14E-6 | $1.84 \mathrm{E}-6$ |
| EP-m |  | kg Neq | $1.23 \mathrm{E}-4$ | 7.09E-6 | $5.77 \mathrm{E}-6$ | $1.36 \mathrm{E}-4$ | $3.73 \mathrm{E}-6$ | $1.92 \mathrm{E}-5$ | $4.23 \mathrm{E}-7$ | -6.22E-5 | 9.69E-5 |
| EP-T |  | mol eq | $1.35 \mathrm{E}-3$ | 7.82E-5 | 6.49E-5 | $1.49 \mathrm{E}-3$ | 4.11E-5 | $2.12 \mathrm{E}-4$ | 2.20E-6 | -7.00E-4 | $1.05 \mathrm{E}-3$ |
| POCP |  | kg NMVOC eq | 5.72E-4 | 2.23E-5 | 2.02E-5 | 6.15E-4 | $1.18 \mathrm{E}-5$ | 6.56E-5 | 8.24E-7 | -2.80E-4 | 4.13E-4 |
| ADP-mm |  | kg Sb eq | 9.40E-6 | $9.00 \mathrm{E}-8$ | 2.06E-7 | $9.70 \mathrm{E}-6$ | $4.74 \mathrm{E}-8$ | $2.44 \mathrm{E}-7$ | 5.44E-10 | -9.28E-7 | 9.06E-6 |
| ADP-f |  | MJ | $5.54 \mathrm{E}+0$ | $5.34 \mathrm{E}-2$ | $1.12 \mathrm{E}-1$ | $5.71 \mathrm{E}+0$ | $2.81 \mathrm{E}-2$ | 1.86E-1 | $1.66 \mathrm{E}-3$ | -2.86E+0 | 3.07E+0 |
| WDP |  | m3 depriv. | 1.10E-1 | $1.64 \mathrm{E}-4$ | 3.95E-2 | 1.50E-1 | 8.63E-5 | 3.67E-3 | 7.60E-6 | -6.29E-2 | 9.07E-2 |
| PM |  | disease inc. | 6.94E-9 | 3.14E-10 | 3.42E-10 | 7.60E-9 | 1.65E-10 | 1.00E-9 | $1.14 \mathrm{E}-11$ | -3.61E-9 | 5.17E-9 |
| IR |  | kBq U-235 eq | 4.80E-3 | $2.33 \mathrm{E}-4$ | 1.04E-4 | $5.14 \mathrm{E}-3$ | 1.23E-4 | 5.80E-4 | 7.73E-6 | -2.20E-3 | $3.65 \mathrm{E}-3$ |
| ETP-fw |  | ctue | $2.68 \mathrm{E}+0$ | $4.34 \mathrm{E}-2$ | $1.76 \mathrm{E}-1$ | $2.90 \mathrm{E}+0$ | $2.28 \mathrm{E}-2$ | $2.46 \mathrm{E}-1$ | $1.59 \mathrm{E}-3$ | $-1.36 \mathrm{E}+0$ | $1.81 \mathrm{E}+0$ |
| HTP-c |  | cTUn | 5.83E-11 | 1.54E-12 | $9.38 \mathrm{E}-12$ | 6.92E-11 | 8.12E-13 | 2.51E-11 | 4.03E-14 | -3.17E-11 | $6.34 \mathrm{E}-11$ |
| HTP-nc |  | ctun | $1.33 \mathrm{E}-9$ | $5.17 \mathrm{E}-11$ | $1.95 \mathrm{E}-10$ | $1.58 \mathrm{E}-9$ | 2.72E-11 | 3.20E-10 | 9.41E-13 | -7.20E-10 | $1.21 \mathrm{E}-9$ |
| SQP |  | Pt | 3.22E+0 | $4.57 \mathrm{E}-2$ | $2.03 \mathrm{E}-2$ | $3.28 \mathrm{E}+0$ | $2.41 \mathrm{E}-2$ | $1.45 \mathrm{E}-1$ | 4.26E-3 | $-4.30 \mathrm{E}+0$ | -8.40E-1 |
|  | Resource use | Unit | A1 | A2 | A3 | A1-A3 | C2 | C3 | C4 | D | Total |
| PERE |  | MJ | $5.45 \mathrm{E}-1$ | 7.66E-4 | 3.86E-1 | 9.32E-1 | 4.03E-4 | 8.94E-3 | $6.58 \mathrm{E}-5$ | -7.33E-1 | $2.08 \mathrm{E}-1$ |
| PERM |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| PERT |  | MJ | $5.45 \mathrm{E}-1$ | 7.66E-4 | 3.86E-1 | $9.32 \mathrm{E}-1$ | 4.03E-4 | $8.94 \mathrm{E}-3$ | $6.58 \mathrm{E}-5$ | -7.33E-1 | $2.08 \mathrm{E}-1$ |
| PENRE |  | MJ | 5.94E+0 | 5.67E-2 | $1.22 \mathrm{E}-1$ | $6.12 \mathrm{E}+0$ | $2.99 \mathrm{E}-2$ | $1.98 \mathrm{E}-1$ | $1.76 \mathrm{E}-3$ | -3.08E+0 | $3.27 \mathrm{E}+0$ |
| PENRM |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| PENRT |  | MJ | 5.94E+0 | 5.67E-2 | 1.22E-1 | 6.12E+0 | $2.99 \mathrm{E}-2$ | 1.98E-1 | $1.76 \mathrm{E}-3$ | $-3.08 \mathrm{E}+0$ | $3.27 \mathrm{E}+0$ |
| PET |  | MJ | 6.49E+0 | $5.75 \mathrm{E}-2$ | $5.08 \mathrm{E}-1$ | 7.05E+0 | 3.03E-2 | $2.07 \mathrm{E}-1$ | 1.83E-3 | -3.81E+0 | $3.48 \mathrm{E}+0$ |
| SM |  | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| RSF |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| NRSF |  | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| FW |  | m3 | $1.88 \mathrm{E}-3$ | $6.05 \mathrm{E}-6$ | $9.37 \mathrm{E}-4$ | $2.83 \mathrm{E}-3$ | 3.18E-6 | $1.28 \mathrm{E}-4$ | $2.05 \mathrm{E}-6$ | -1.16E-3 | 1.80E-3 |


| Output flows and waste categories | Unit | A1 | A2 | A3 | A1-A3 | C2 | C3 | C4 | D | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HWD | kg | $1.28 \mathrm{E}-6$ | 1.37E-7 | $1.08 \mathrm{E}-7$ | $1.53 \mathrm{E}-6$ | 7.19E-8 | 3.27E-7 | 1.99E-9 | -1.05E-6 | 8.80E-7 |
| NHWD | kg | 1.02E-2 | $3.31 \mathrm{E}-3$ | $1.06 \mathrm{E}-3$ | $1.46 \mathrm{E}-2$ | $1.74 \mathrm{E}-3$ | $9.39 \mathrm{E}-3$ | 7.31E-3 | -4.13E-3 | 2.89E-2 |
| RWD | kg | 5.13E-6 | 3.63E-7 | $1.16 \mathrm{E}-7$ | $5.60 \mathrm{E}-6$ | 1.91E-7 | 7.44E-7 | $1.08 \mathrm{E}-8$ | -2.12E-6 | 4.43E-6 |
| CRU | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| MFR | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| MER | kg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| EE | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| EET | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| EEE | MJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31203035777

