Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3067801-$ SiTech+ Coupler STMM 90 S/S
Unit:	1 piece
Manufacturer:	Wavin - IT - SM Maddalena

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:
Martijn van Hövell - SGS Search

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - IT - SM Maddalena (2020). ($\mathbf{V}=\mathrm{module} \mathrm{declared} ,\mathrm{MND} \mathrm{=} \mathrm{module} \mathrm{not} \mathrm{declared)}$

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - IT - SM Maddalena. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - IT - SM Maddalena.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$4.68 \mathrm{E}-1$	1.17E-2	$2.99 \mathrm{E}-2$	$5.09 \mathrm{E}-1$	5.67E-3	3.11E-1	$2.83 \mathrm{E}-3$	-2.69E-1	$5.60 \mathrm{E}-1$
GWP-f		kg CO2 eq	$5.26 \mathrm{E}-1$	1.17E-2	$2.56 \mathrm{E}-2$	$5.63 \mathrm{E}-1$	$5.67 \mathrm{E}-3$	$2.37 \mathrm{E}-1$	$2.83 \mathrm{E}-3$	-3.04E-1	$5.04 \mathrm{E}-1$
GWP-b		kg CO2 eq	-5.80E-2	7.09E-6	$2.16 \mathrm{E}-3$	-5.58E-2	$3.44 \mathrm{E}-6$	7.42E-2	$2.51 \mathrm{E}-6$	$3.48 \mathrm{E}-2$	5.32E-2
GWP-Iuluc		kg CO2 eq	$3.96 \mathrm{E}-4$	4.13E-6	$2.16 \mathrm{E}-3$	$2.56 \mathrm{E}-3$	$2.01 \mathrm{E}-6$	3.13E-5	4.83E-8	-3.26E-4	$2.27 \mathrm{E}-3$
ODP		kg CFC11 eq	3.19E-8	2.69E-9	$2.56 \mathrm{E}-9$	3.71E-8	1.31E-9	4.61E-9	7.16E-11	-1.64E-8	$2.67 \mathrm{E}-8$
AP		mol $\mathrm{H}+\mathrm{eq}$	2.12E-3	6.65E-5	1.03E-4	$2.29 \mathrm{E}-3$	3.23E-5	$1.94 \mathrm{E}-4$	1.71E-6	-9.41E-4	$1.57 \mathrm{E}-3$
EP-fw		kg Peq	1.12E-5	$9.61 \mathrm{E}-8$	3.97E-7	$1.17 \mathrm{E}-5$	4.67E-8	9.20E-7	2.22E-9	-6.27E-6	$6.37 \mathrm{E}-6$
EP-m		kg Neq	3.84E-4	2.38E-5	$1.74 \mathrm{E}-5$	4.26E-4	1.16E-5	5.91E-5	$1.41 \mathrm{E}-6$	-1.83E-4	3.15E-4
EP-T		mol eq	$4.24 \mathrm{E}-3$	2.62E-4	1.96E-4	4.70E-3	1.27E-4	6.50E-4	6.94E-6	-2.06E-3	3.42E-3
POCP		kg NMVOC eq	1.81E-3	7.50E-5	6.08E-5	1.94E-3	3.64E-5	$2.01 \mathrm{E}-4$	2.60E-6	-8.26E-4	$1.36 \mathrm{E}-3$
ADP-mm		kg Sb eq	3.77E-5	3.02E-7	6.22E-7	3.86E-5	1.47E-7	7.39E-7	1.71E-9	-3.05E-6	3.65E-5
ADP-f		MJ	$1.74 \mathrm{E}+1$	$1.79 \mathrm{E}-1$	3.36E-1	$1.79 \mathrm{E}+1$	$8.70 \mathrm{E}-2$	$5.66 \mathrm{E}-1$	$5.23 \mathrm{E}-3$	-8.75E+0	9.82E+0
WDP		m3 depriv.	$3.48 \mathrm{E}-1$	5.50E-4	$1.19 \mathrm{E}-1$	$4.68 \mathrm{E}-1$	2.67E-4	1.14E-2	2.40E-5	-1.89E-1	2.90E-1
PM		disease inc.	2.20E-8	$1.05 \mathrm{E}-9$	1.03E-9	$2.41 \mathrm{E}-8$	5.12E-10	3.03E-9	$3.59 \mathrm{E}-11$	-1.04E-8	$1.73 \mathrm{E}-8$
IR		kBq U-235 eq	$1.64 \mathrm{E}-2$	7.84E-4	$3.14 \mathrm{E}-4$	$1.75 \mathrm{E}-2$	3.80E-4	$1.76 \mathrm{E}-3$	$2.44 \mathrm{E}-5$	-6.55E-3	$1.31 \mathrm{E}-2$
ETP-fw		CTUe	8.43E+0	$1.46 \mathrm{E}-1$	5.31E-1	$9.10 \mathrm{E}+0$	7.07E-2	7.84E-1	5.25E-3	-3.96E+0	$6.00 \mathrm{E}+0$
HTP-c		CTUn	$1.76 \mathrm{E}-10$	5.18E-12	2.83E-11	2.09E-10	2.51E-12	$7.58 \mathrm{E}-11$	1.28E-13	-8.58E-11	2.02E-10
HTP-nc		ctun	$4.23 \mathrm{E}-9$	1.74E-10	5.87E-10	$4.99 \mathrm{E}-9$	8.42E-11	9.84E-10	$3.02 \mathrm{E}-12$	-2.09E-9	3.97E-9
SQP		Pt	7.32E+0	$1.53 \mathrm{E}-1$	6.13E-2	7.54E+0	$7.45 \mathrm{E}-2$	$4.40 \mathrm{E}-1$	$1.34 \mathrm{E}-2$	-1.07E+1	$-2.68 \mathrm{E}+0$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	1.30E+0	$2.57 \mathrm{E}-3$	1.16E+0	2.47E+0	$1.25 \mathrm{E}-3$	$2.72 \mathrm{E}-2$	2.09E-4	-1.88E+0	$6.23 \mathrm{E}-1$
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	1.30E+0	$2.57 \mathrm{E}-3$	$1.16 \mathrm{E}+0$	2.47E+0	$1.25 \mathrm{E}-3$	$2.72 \mathrm{E}-2$	2.09E-4	-1.88E+0	$6.23 \mathrm{E}-1$
PENRE		MJ	$1.86 \mathrm{E}+1$	$1.90 \mathrm{E}-1$	$3.67 \mathrm{E}-1$	$1.92 \mathrm{E}+1$	$9.24 \mathrm{E}-2$	$6.03 \mathrm{E}-1$	$5.55 \mathrm{E}-3$	$-9.44 \mathrm{E}+0$	$1.05 \mathrm{E}+1$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$1.86 \mathrm{E}+1$	1.90E-1	3.67E-1	$1.92 \mathrm{E}+1$	$9.24 \mathrm{E}-2$	$6.03 \mathrm{E}-1$	5.55E-3	$-9.44 \mathrm{E}+0$	$1.05 \mathrm{E}+1$
PET		MJ	$2.00 \mathrm{E}+1$	$1.93 \mathrm{E}-1$	$1.53 \mathrm{E}+0$	$2.17 \mathrm{E}+1$	9.36E-2	$6.31 \mathrm{E}-1$	5.76E-3	-1.13E+1	$1.11 \mathrm{E}+1$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	$6.05 \mathrm{E}-3$	2.03E-5	$2.83 \mathrm{E}-3$	8.90E-3	$9.85 \mathrm{E}-6$	4.17E-4	$6.46 \mathrm{E}-6$	-3.47E-3	$5.86 \mathrm{E}-3$

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	4.08E-6	4.58E-7	3.27E-7	4.87E-6	$2.23 \mathrm{E}-7$	$1.00 \mathrm{E}-6$	6.27E-9	-3.20E-6	2.90E-6
NHWD	kg	3.18E-2	1.11E-2	3.19E-3	4.61E-2	5.39E-3	$2.89 \mathrm{E}-2$	2.30E-2	-1.14E-2	9.20E-2
RWD	kg	1.81E-5	1.22E-6	3.49E-7	1.96E-5	5.92E-7	$2.25 \mathrm{E}-6$	3.42E-8	-6.29E-6	1.62E-5
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

