Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3067768-$ SiTech+ Branch STEA $67,5^{\circ} 90 \times 90$
Unit:	1 piece
Manufacturer:	Wavin -IT - SM Maddalena

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:
Martijn van Hövell - SGS Search

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - IT - SM Maddalena (2020). ($\mathbf{V}=\mathrm{module} \mathrm{declared} ,\mathrm{MND} \mathrm{=} \mathrm{module} \mathrm{not} \mathrm{declared)}$

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - IT - SM Maddalena. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - IT - SM Maddalena.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	8.32E-1	$1.77 \mathrm{E}-2$	5.85E-2	$9.08 \mathrm{E}-1$	$1.07 \mathrm{E}-2$	5.11E-1	5.18E-3	-4.98E-1	9.37E-1
GWP-f		kg CO2 eq	$9.31 \mathrm{E}-1$	$1.77 \mathrm{E}-2$	5.01E-2	$9.99 \mathrm{E}-1$	$1.07 \mathrm{E}-2$	3.84E-1	5.19E-3	-5.53E-1	$8.46 \mathrm{E}-1$
GWP-b		kg CO2 eq	-1.00E-1	$1.08 \mathrm{E}-5$	4.23E-3	-9.59E-2	$6.48 \mathrm{E}-6$	$1.27 \mathrm{E}-1$	$4.57 \mathrm{E}-6$	$5.48 \mathrm{E}-2$	8.62E-2
GWP-Iuluc		kg CO 2 eq	6.31E-4	6.27E-6	4.23E-3	4.87E-3	$3.78 \mathrm{E}-6$	6.00E-5	$8.78 \mathrm{E}-8$	-5.36E-4	4.39E-3
ODP		kg CFC11 eq	$4.14 \mathrm{E}-8$	$4.08 \mathrm{E}-9$	5.03E-9	$5.05 \mathrm{E}-8$	$2.46 \mathrm{E}-9$	$8.59 \mathrm{E}-9$	1.31E-10	-2.72E-8	$3.45 \mathrm{E}-8$
AP		mol $\mathrm{H}+\mathrm{eq}$	3.59E-3	1.01E-4	2.02E-4	3.90E-3	$6.08 \mathrm{E}-5$	3.59E-4	3.12E-6	-1.73E-3	2.59E-3
EP-fw		kg Peq	1.82E-5	$1.46 \mathrm{E}-7$	$7.78 \mathrm{E}-7$	1.91E-5	$8.78 \mathrm{E}-8$	$1.76 \mathrm{E}-6$	$4.05 \mathrm{E}-9$	-1.09E-5	1.01E-5
EP-m		kg Neq	6.53E-4	3.61E-5	3.41E-5	7.24E-4	$2.17 \mathrm{E}-5$	$1.08 \mathrm{E}-4$	$2.33 \mathrm{E}-6$	-3.31E-4	5.25E-4
EP-T		$\mathrm{mol} \mathrm{Neq}^{\text {d }}$	7.21E-3	3.98E-4	3.83E-4	$7.99 \mathrm{E}-3$	2.40E-4	$1.19 \mathrm{E}-3$	$1.27 \mathrm{E}-5$	-3.72E-3	5.71E-3
POCP		kg NMVOC eq	3.10E-3	$1.14 \mathrm{E}-4$	$1.19 \mathrm{E}-4$	$3.33 \mathrm{E}-3$	$6.85 \mathrm{E}-5$	$3.70 \mathrm{E}-4$	$4.74 \mathrm{E}-6$	-1.52E-3	$2.25 \mathrm{E}-3$
ADP-mm		kg Sb eq	4.31E-5	$4.58 \mathrm{E}-7$	1.22E-6	$4.48 \mathrm{E}-5$	$2.76 \mathrm{E}-7$	$1.39 \mathrm{E}-6$	3.13E-9	-4.82E-6	4.16E-5
ADP-f		MJ	$3.15 \mathrm{E}+1$	$2.72 \mathrm{E}-1$	6.59E-1	$3.24 \mathrm{E}+1$	$1.64 \mathrm{E}-1$	$1.08 \mathrm{E}+0$	$9.54 \mathrm{E}-3$	-1.64E+1	$1.73 \mathrm{E}+1$
WDP		m3 depriv.	$6.24 \mathrm{E}-1$	$8.34 \mathrm{E}-4$	$2.33 \mathrm{E}-1$	$8.58 \mathrm{E}-1$	5.03E-4	$2.11 \mathrm{E}-2$	4.37E-5	-3.47E-1	$5.32 \mathrm{E}-1$
PM		disease inc.	3.62E-8	$1.60 \mathrm{E}-9$	2.02E-9	3.98E-8	$9.63 \mathrm{E}-10$	5.73E-9	$6.55 \mathrm{E}-11$	-1.86E-8	$2.80 \mathrm{E}-8$
IR		kBq U-235 eq	$2.45 \mathrm{E}-2$	1.19E-3	$6.15 \mathrm{E}-4$	$2.63 \mathrm{E}-2$	7.16E-4	3.32E-3	4.44E-5	-1.15E-2	$1.88 \mathrm{E}-2$
ETP-fw		CTUe	1.30E+1	$2.21 \mathrm{E}-1$	$1.04 \mathrm{E}+0$	$1.43 \mathrm{E}+1$	$1.33 \mathrm{E}-1$	$1.37 \mathrm{E}+0$	8.86E-3	-6.61E+0	9.22E+0
HTP-c		CTUn	2.90E-10	7.85E-12	5.54E-11	3.53E-10	4.73E-12	1.44E-10	2.31E-13	-1.52E-10	3.50E-10
HTP-nc		CTUn	7.03E-9	$2.63 \mathrm{E}-10$	$1.15 \mathrm{E}-9$	$8.44 \mathrm{E}-9$	1.59E-10	$1.84 \mathrm{E}-9$	5.34E-12	-3.73E-9	6.71E-9
SQP		Pt	1.23E+1	$2.33 \mathrm{E}-1$	$1.20 \mathrm{E}-1$	1.27E+1	1.40E-1	$8.42 \mathrm{E}-1$	$2.45 \mathrm{E}-2$	-1.78E+1	-4.10E+0
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	2.20E+0	3.90E-3	$2.28 \mathrm{E}+0$	4.49E+0	$2.35 \mathrm{E}-3$	5.19E-2	3.77E-4	-3.11E+0	1.44E+0
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$2.20 \mathrm{E}+0$	3.90E-3	$2.28 \mathrm{E}+0$	4.49E+0	$2.35 \mathrm{E}-3$	5.19E-2	3.77E-4	-3.11E+0	1.44E+0
PENRE		MJ	3.38E+1	2.89E-1	7.19E-1	$3.48 \mathrm{E}+1$	$1.74 \mathrm{E}-1$	$1.15 \mathrm{E}+0$	1.01E-2	-1.76E+1	$1.85 \mathrm{E}+1$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$3.38 \mathrm{E}+1$	$2.89 \mathrm{E}-1$	7.19E-1	$3.48 \mathrm{E}+1$	$1.74 \mathrm{E}-1$	1.15E+0	1.01E-2	-1.76E+1	$1.85 \mathrm{E}+1$
PET		MJ	3.60E+1	$2.92 \mathrm{E}-1$	$3.00 \mathrm{E}+0$	$3.93 \mathrm{E}+1$	1.76E-1	$1.20 \mathrm{E}+0$	1.05E-2	-2.07E+1	$1.99 \mathrm{E}+1$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	1.03E-2	$3.08 \mathrm{E}-5$	5.54E-3	$1.59 \mathrm{E}-2$	$1.85 \mathrm{E}-5$	7.07E-4	1.18E-5	-6.19E-3	1.04E-2

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	6.32E-6	$6.95 \mathrm{E}-7$	$6.40 \mathrm{E}-7$	7.65E-6	4.19E-7	1.85E-6	$1.15 \mathrm{E}-8$	-5.38E-6	$4.56 \mathrm{E}-6$
NHWD	kg	5.17E-2	1.68E-2	$6.24 \mathrm{E}-3$	7.48E-2	1.02E-2	5.38E-2	4.20E-2	-2.04E-2	1.60E-1
RWD	kg	2.53E-5	1.85E-6	$6.84 \mathrm{E}-7$	$2.78 \mathrm{E}-5$	1.11E-6	$4.25 \mathrm{E}-6$	$6.24 \mathrm{E}-8$	-1.09E-5	2.23E-5
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31 203035777

